Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Схема дослідження функції та побудова її графіка. Функція попиту.
З теореми випливає, що коли крива задана рівнянням , де - визначена і має неперервні похідні до другого порядку включно на деякому проміжку , і в кожній точці цього проміжку, то задана крива на цьому проміжку вгнута. Якщо , то задана крива на цьому проміжку опукла. Інакше, якщо при , то крива не має точок перегину. Отже точка може бути точкою перегину кривої, заданої рівнянням , якщо або в точці не існує, але існує.
Надалі розглядатимемо випадок, коли існує в усіх точках проміжку . Тоді корені рівняння можуть бути абсцисами точок перегину кривої. Те, що похідна другого порядку
дорівнює в даній точці нулю, є тільки необхідною умовою того, щоб була абсцисою точки перегину кривої, але не достатньою.
Для того, щоб знайти точки перегину кривої, заданої рівнянням , треба:
1) визначити від функції похідну другого порядку і прирівняти її до нуля . З коренів цього рівняння вибрати тільки дійсні корені і ті, які належать області існування функції;
2) в околі кожного вибраного таким чином кореня визначити знак похідної другого порядку спочатку при значеннях , менших від розглядуваного кореня, а потім при значеннях , більших за даний корінь. Якщо при переході через вибраний корінь похідна змінює знак, то точка є точкою перегину заданої кривої. Якщо при переході через знак похідної другого порядку не змінюється, то не є точкою перегину кривої.
Зокрема, якщо при переході через змінює знак “+” на “-”, то крива при проходженні через точку перегину змінює відповідно свій вигляд із вгнутості на опуклість. Якщо при переході через змінює знак “-” на “+” , то крива при проходженні через точку перегину змінює відповідно свій вигляд з опуклості на вгнутість.
Приклад. Знайти інтервали вгнутості й опуклості та точки перегину кривої, заданої рівнянням
.
Р о з в ’ я з о к. Знаходимо похідні першого та другого порядків: ; .
Прирівнюємо до нуля. Дістанемо рівняння
,
звідки знаходимо корені
Отже, в інтервалах похідна , а в інтервалі похідна . Тому в інтервалах крива вгнута, а в інтервалі - опукла. Точки є точки перегину кривої.
2. Асимптоти кривих
Нехай крива задана рівнянням , де є неперервною функцією на відрізку . Тоді задана крива всіма своїми точками знаходитиметься в замкненому прямокутнику , деє найбільше значення функції на відрізку . Якщо функція задана на нескінченному проміжку або у випадку, коли проміжок скінчений, але містить точки розриву другого роду заданої функції, то криву не завжди можна розмістити в прямокутнику. Тоді крива або окремі її вітки йдуть в нескінченність. При цьому може трапитися так, що крива на нескінченності, “розпрямляючись”, наближається до деякої прямої лінії (рис.6.21).
Означення. Пряма лінія називається асимптотою кривої , якщо відстань точки кривої до прямої прямує до нуля, коли точка по кривій рухається в нескінченність, тобто