Зворотний зв'язок

Верифікація закону всесвітнього тяжіння

Застосовуючи для конкретизації характеристик обертального руху тіла навколо власної осі основний закон динаміки [8] обертального руху, отримаємо вираз для моменту сили (фіктивного), який діє на тіло:

.(8)

Тут – момент інерції тіла відносно власної осі. Для однорідного сферичного тіла діаметром

,де .(9)

Породжуючою причиною моменту сили є орбітальний рух, тому при переході від (4) до рівняння динаміки обертального руху вираз (5) необхідно доповнити моментом сили згідно з (7) та (8):

.(10)

Напрям момента сили перпендикулярний до площини орбіти, тому остання і надалі залишатиметься плоскою. Таким чином, при розгляді законів руху об’ємного тіла в центральному полі необхідно записувати [3]:

;(11)

(12)

Інтегруючи співвідношення (12), одержимо вираз:

.(13)

Для планет Сонячної системи числове значення співмножника близьке до одиниці (найбільше його відхилення від одиниці є в Юпітера – ), і його реєстрація практично неможлива. Зате вплив розміру планет накопичується у низці ефектів, наприклад, призводить до повороту перицентра орбіти.

Перейшовши в (11) від параметра до полярного кута , заміною змінних

(14)

із використанням зв’язку (13) рівняння (11) зведемо до вигляду:

.(15)

Будемо шукати розв’язок (15) за умови . У лінійному наближенні, приймаючи що [3]

,(16)

із (15) отримаємо рівняння гармонічного осцилятора

,(17)

відносна частота коливань якого відрізняється від одиниці. Фактично це означає, що перицентр орбіти об’ємної планети зміщується в прямому напрямі з частотою:

.(18)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат