Зворотний зв'язок

Стаціонарне електричне поле у вакуумі

Використання формули (1.10) можливе за умови, що розподіл заряду в кожній точці даного тіла відомий. Якщо це не так, можна скористатись теоремою Гаусса, згідно якої

, (1.11)

де q – сумарний заряд, що міститься під замкненою поверхнею σ. Вибираючи певним чином поверхню, можна знайти напруженість поля у потрібній точці. Теорема Гаусса може бути записана й у диференціальній формі:

. (1.12)

Векторне поле вважається повністю визначеним, якщо у кожній точці простору визначено його дивергенцію і ротор. Співвідношення (1.12) визначає першу з цих величин і тому називається першим рівнянням електростатики вакууму. Друге рівняння електростатики

(1.13)

відображає факт потенціальності електростатичного поля; у інтегральній формі воно записується так:

. (1.14)

Перша з властивостей диференціальних операторів свідчить про те, що рівняння (1.13) задовольняється тотожньо, якщо покласти

. (1.15)Це означає, що крім векторного поля (поля напруженості), електричне поле можна характеризувати визначенням скалярного поля з потенціалом φ, який має зміст роботи по переміщенню одиничного позитивного точкового заряду з довільної нескінченно віддаленої від джерела поля точки A у точку поля B, радіус-вектор якої , вздовж дуги AB довільної форми:

. (1.16)

Робота по переміщенню точкового заряду q з положення 1 у положення 2 визначається тільки величиною цього заряду і різницею потенціалів кінцевої і початкової точок:

, (1.17)

або

,

де

(1.18)

– енергія, якою володіє заряд q, заходячись у точці зовнішнього електричного поля. Поле створюється електричними зарядами, отже (1.18) являє собою енергію взаємодії зарядів. У випадку системи n точкових зарядів її можна знайти за формулою:

, (1.19)

де - потенціал поля, створеного у місці знаходження i-го заряду усіма іншими зарядами. У більш загальному випадку поля, створеного довільною системою зарядів, що займає область простору Ω, його енергія визначається розподілом заряду і потенціалу

, (1.20)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат