Диференціал
Нормаллю до поверхні в точці називається пряма, що проходить через точку перпендикулярно до дотичної площини до поверхні в цій точці.
Рівняння дотичної площини і нормалі. У поверхні, заданої рівнянням , де - функція, диференційована в точці , дотична площина в точці існує і має рівняння
. (6.56)
За рівнянням дотичної площини до поверхні в точці легко записати рівняння нормалі:
. (6.57)
Геометричний зміст повного диференціала. Нехай функція диференційована в точці . Це означає, що поверхня, задана рівнянням , має в точці дотичну площину (рис. 6.8). Її рівняння (6.56),
Рис.6.7 Рис.6.8
поклавши ; , можна записати у вигляді
.
У цьому рівнянні зліва стоїть різниця аплікат точок дотичної площини, відповідних точкам і , а справа - повний диференціал функції в точці .
Отже, повний диференціал функції в точці геометрично означає приріст аплікати дотичної площини до поверхні, яка зображує функцію, в точці при переході із точки в точку .
Інваріантна форма запису диференціала. За означенням, для диференційованої в точці функції двох незалежних змінних
.
Покладемо, зокрема, (тобто ), одержимо Отже, . Аналогічно, поклавши , одержимо . Таким чином, диференціали незалежних змінних співпадають з приростом цих змінних, і ми можемо записати диференціал функції у вигляді
,
або, що те саме,
.
Нехай де і - складні функції незалежних змінних і . Допустимо, що функції і диференційовані в точці , а функція диференційована в точці , де , . Тоді складна функція буде диференційована в точці . При цьому, згідно з (6.58),
.
Застосувавши правила для обчислення частинних похідних
складної функції (формули 6.47), одержимо
Оскільки в дужках стоять повні диференціали функцій , , маємо: