Зворотний зв'язок

Матриці. Загальна інформація

Матриці. Загальна інформація

Основні означення

Прямокутна таблиця чисел aij = 1, 2, .... m; j= 1, 2, ..., n, скла¬дена з m рядків та n стовпців і записана у вигляді

або

називається матрицею. Поняття матриці вперше ввели англійські математики У. Гамільтон і Д. Келі. Коротко матрицю позначають так:

або

де aij - елементи матриці, причому індекс і в елементі aij означає но¬мер рядка, aj- номер стовпця, на перетині яких стоїть даний елемент.

Добуток числа рядків m на число стовпців n називають розміром матриці і позначають m X n. Якщо хочуть вказати розмір m X n мат¬риці А, то пишуть Аmn.

Матриця, в якої число рядків дорівнює числу стовпців, назива¬ється квадратною. Кількість рядків (стовпців) квадратної матриці називається її порядком. Матриця, у якої всього один рядок, назива¬ється матрицею-рядком, а матриця, у якої всього один стовпець,- матрицею-стовпцем. Дві матриці Аmn=(aij) та Вmn= (bij) нази¬ваються рівними, якщо вони однакових розмірів і мають рівні відпо¬відні елементи: аij = bij. Нульовою називається матриця, у якої всі елементи дорівнюють нулю. Позначається така матриця буквою О. Як і в визначниках (п. 1.1), в квадратних матрицях виділяють головну і побічну діагональ.

Квадратна матриця називається діагональною, якщо всі її елемен¬ти, крім тих, що знаходяться на головній діагоналі, дорівнюють нулю. Діагональна матриця, у якої кожен елемент головної діагоналі дорів¬нює одиниці, називається одиничною і позначається буквою Е. На¬приклад, одинична матриця третього порядку має вигляд

Будь-якій квадратній матриці

можна поставити у відповідність певне число, яке називається ви¬значником (детермінантом) цієї матриці і позначається символом det А. За означенням

det A=

Наприклад, якщо

то det

Прямокутна матриця розміром т X п (п ф пі) визначника не має.

Дії над матрицями

1°. Операція додавання матриць вводиться тільки для матриць однакового розміру. Сумою С = А + В двох матриць Аmn - (aij) і Вmn = (bij) називається матриця Сmn= (cij)=(aij+bij). На¬приклад,

2°. Добутком матриці Аmn = (aij) на число k (або числа k на матрицю Amn) називається матриця Вmn= (kaij). Наприклад,

3°. Різниця матриць А - В визначається як сума матриці А і мат¬риці В, помноженої на - 1:

Справедливі такі властивості операцій:


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат