Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних
тоді, застосовуючи двічі доведену теорему, дістаємо таку рівність:
Взагалі цей спосіб можна застосовувати доти, поки не прийдемо до відношення яке має при певну границю. Тоді
У цьому випадку кажуть, що правило Лопіталя використовується разів.
Зауваження 2. Теорема 1 при виконанні її умов справджується і тоді, коли точка є невласною, тобто . У цьому випадку
Справді, застосувавши підстановку , маємо
Сформулюємо другу теорему Лопіталя, яка стосується розкриття невизначеності виду
Теорема 2. Нехай для функцій і виконуються умови:
1) функції визначені на півінтервалі і при цьому
2) функції диференційовані в інтервалі причому
3) існує ( скінчена або нескінченна) границя
Тоді
.
Зауваження 3. Крім невизначеностей є ще й інші невизначеності: Проте всі вони зводяться до невизначеності або
Справді, нехай, наприклад, маємо невизначеність Інакше кажучи, нехай маємо функції і такі, що Тоді добуток можна зобразити у вигляді частки:
Отже, у правій частині ми маємо невизначеність виду
Якщо маємо невизначеність , тобто і то різницю можна записати:
отже, в правій частині маємо невизначеність виду
Якщо маємо степінь і тобто невизначеність виду , то її розкривають так.
Припускаючи, що , вираз має вигляд
У показнику при маємо невизначеність виду , яка (це було показано вище) зводиться до невизначеності . Аналогічно невизначеності розкриваються невизначеності , .
Приклади. Користуючись теоремами Лопіталя, знайти границі функцій:
1. 2. 3.
4. 5. 6.
7. 8.