Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних
Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних
План
Основні теореми диференціального числення
Теорема Ролля
Теорема Лагранжа
Теорема Коші
Правило Лопіталя
Формула Тейлора для многочлена
Формула Тейлора для довільної функції
Формула Тейлора для функції двох змінних
6.12. Основні теореми диференціального числення
У курсі математичного аналізу одне з центральних місць займають так звані теореми про середнє значення, до яких належать теореми Ролля, Лагранжа і Коші. В цих теоремах йдеться про те, що коли функція та її похідна першого порядку задовольняють певним умовам, то всередині інтервалу знайдеться точка, в якій функція має певні властивості (про ці властивості йдеться в теоремі). Тому й самі теореми називають теоремами про середнє.
6.12. 1. Теорема Ролля
Теорема. Нехай функція задовольняє умовам:
1) визначена і неперервна на відрізку :
2) диференційована в інтервалі ;
3) на кінцях відрізка набуває однакових значень: .
Тоді всередині інтервалу знайдеться хоча б одна точка в якій .
Д о в е д е н н я.
Випадок 1. Функція на відрізку є сталою:
.
Тоді , тобто в кожній точці похідна дорівнює нулю, а тому за точку можна взяти будь-яку точку інтервалу і для цієї точки теорема буде справедлива.
Випадок 2. Функція не є тотожною сталою на відрізку . Оскільки за умовою теореми не є неперервною, то вона на відрізку набуває найбільшого і найменшого значень. Позначимо найбільше значення через , а найменше - через . Зрозуміло, що в розглянутому випадку .