Зворотний зв'язок

Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних

Через те, що , то хоча б одне з чисел або досягається функцією всередині інтервалу . Нехай, наприклад, число досягається функцією всередині інтервалу , тобто існує хоча б одна точка, позначимо її , в якій

.

Покажемо, що .

Справді, оскільки є найменше значення функції на відрізку , то це число буде найменшим і серед значень функції, які вона набуває для всіх з деякого досить малого околу точки . Позначимо цей окіл через .

Тоді для всіх справджуватимуться нерівності

при ,

при .

Розглянемо відношення , для якого справедливі нерівності

при ,

при ,

причому .

Перейдемо в цих нерівностях до границі, коли . Тоді границя відношення, яке стоїть в лівій частині нерівностей, існує і дорівнює похідній , тому

, .

Звідси випливає, що . Теорему доведено

З'ясуємо геометричний зміст теореми Ролля (рис.6.9):

1) графік функції є суцільна лінія (- неперервна на відрізку);

2) крива, що є графіком функції, є гладкою кривою (крива називається гладкою, якщо в кожній її точці можна провести дотичну);

3) крайні точки графіка знаходяться на однаковій висоті від .

6.12. 2. Теорема Лагранжа

Теорема. Якщо функція : 1) задана і неперервна на відрізку ; 2) диференційована в інтервалі , то тоді всередині інтервалу знайдеться хоча б одна точка , в якій справджуються рівність

. (6.73)

Д о в е д е н н я. Розглянемо функцію

,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат