Зворотний зв'язок

Задачі геометричного і фізичного змісту, що приводить до поняття подвійного інтеграла. Подвійний інтеграл, його властивості

Отже, об’єм циліндричного тіла

. (11.3)

Маса тіла. Нехай тепер в трьохвимірному просторі, де визначена прямокутна декартова система координат , задано тіло (множина) з неперервно розподіленою в ньому масою з густиною розподілу ( ). Потрібно визначити масу тіла . Розіб’ємо на частин об’єми (трьохвимірні міри) яких ( в припущенні, що вони існують) позначимо або

Виберемо довільним чином в кожній частині точку і тоді маса тіла (по аналогії із об’ємом циліндричного тіла) дорівнює

Рис.11.2 Рис.11.3

(11.4)

Знову ж таки на вираз (11.4) можна дивитися як на певну операцію над функцією , що задана в трьохвимірному просторі .

Ця операція на цей раз називається операцією потрійного інтегрування (за Ріманом 1)), а її результат – визначеним потрійним інтегралом, що позначається так:

Отже,

(11.5)

До знаходження таких границь приводять не тільки задачі про визначення об’єму циліндричного тіла і знаходження маси, але й інші задачі.

Нижче ми побачимо, що частина теорії кратного інтегрування, зокрема, теореми існування і теореми про аддитивні властивості інтеграла, може бути викладена цілком аналогічно як в одновимірному, так і в вимірному випадку. Проте в теорії кратних інтегралів виникають певні труднощі, яких не було в теорії звичайного означеного інтеграла.

Справа в тому, що однократний інтеграл Рімана 1) ми визначали для дуже простої множини – відрізку який дробився знову на відрізки. Ніяких труднощів у визначенні довжини (одновимірної міри) відрізків не виникало. Проте у випадку подвійних, потрійних і, взагалі, кратних інтегралів область інтегрування доводиться ділити (лініями, поверхнями, гіперповерхнями) на частини з криволінійними границями, і виникає питання визначення поняття площі, об’єму або взагалі вимірної міри цих частин.

1) Б. Ріман (1826-1866) – німецький математик.

Поняття про міру Жордана 1). В двохвимірному випадку ми будемо мати справу з обмеженими областями, що мають гладку границю (рис. 11.2) або кусково-гладку границю, що складається із кінцевого числа гладких кусків (ліній). Ці області в свою чергу доводиться ділити на частини, що мають кусково-гладку границю. Кожній такій області і деяким іншим множинам можна привести у відповідність додатне число яке називається площею або двохвимірною мірою Жордана . При цьому виконуються такі властивості:

1) якщо прямокутник з основою і висотою то

2) якщо і мають міри то

3) якщо область розрізана за допомогою кусково-гладкої кривої на дві частини і тоІснують множини двохвимірної міри, що дорівнюють нулю, такі, як точка, відрізок, гладка або кусково-гладка крива.

В трьохвимірному випадку нас будуть цікавити області, що мають своєю границею кусково-гладкі поверхні. Куля, еліпсоїд, куб можуть служити прикладом таких поверхонь.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат