Математичні моделі й методи обгрунтування управлінських рішень, сфери їх використання в управлінській діяльності
Важливо те, що отримані результати були д тими ж, якби ми користувались не F12 і F123, а, скажімо, F31 i F312. Зверніть увагу на те, що оптимальне рішення для А=9 – не єдине!
Динамічне програмування потужний та важливий метод вирішення певного класу оптимізаційних задач, оскільни він дозволяє різко скоротити обсяг переборів варіантів і обсяг обчислень [8, с.35].
Для того, щоб надати для розгляду якомога більше математичних моделей (звичайно не всі, інакше потрібно було б писати книгу), надалі я слідуватиму прикладу американських класиків Мескона М., Альберта М. та Хедоурі Ф. і буду приділяти більше уваги короткому описанню тієї чи іншої моделі, ніж вдаватися у математичні подробиці.
Приведемо приклад наступної математичної моделі – моделі управління запасами. Модель управління запасами використовується для визначення часу розміщення замовлень на ресурси та їх кількості, а також маси готової продукції. Будь-яка організація повинна підтримувати деякий рівень запасів для запобігання затримок на виробництві і в збуті [5, с. 231]. Ціль даної моделі – зведення до мінімуму негативних наслідків накопичення запасів, що виражається в певних витратах. Всупереч відомій приказці (“Запас кишеню не тягне”), підприємцю потрібно піклуватися про те, щоб витрати на зберігання продукції були в розумних межах.
Існують різні види запасів. Буферний запас, що створюється між постачальником та виробником, потрібен для компенсації затримок в поставках, для послаблення залежності споживача від постачальника, для виробництва продукції партіями оптимального розміру. Запас готової продукції потрібен для виробництва продукції партіями оптимального розміру, для задоволення очікуваного попиту, для компенсації відхилення фактичного попиту, від того, що прогнозується (гарантійний запас). Можливі різні постановки задачі управління запасами. Наприклад: визначити обсяг замовлень, вважаючи моменти виробництва замовлень фіксованими, або визначити і обсяг замовлень і моменти замовлень. Під оптимальним як правило розуміється рішення, що мінімізує суму всіх затрат, пов’язаних із створенням запасів. Затрати бувають трьох типів: затрати на оформлення і отримання замовлення, вартість зберігання продукції і штрафи при виснаженні запасів за недопоставлену продукцію. Приходиться також враховувати характеристики попиту (відомий – невідомий, постійний – залежить від часу, виникає в певні моменти – існує весь час) і замовлень (виконуються одразу ж – через деякий час, приймаються в будь-який час – в певні моменти, замовлене надходить рівномірно – нерівномірно і т.ін.)[8, с.44].
Досить часто менеджеру доводиться вирішувати проблеми, які носять масовий характер. Наприклад це може стосуватися обслуговування клієнтури, яка надходить чергою або врахування затрат часу при простої на митниці і т.ін. Деколи доводиться розробити автоматизоване устаткування, до якого в порядку черги будуть надходити об’єкти для обслуговування. Мескон М. наводить приклади масового характеру при прийомі дзінків в авіакомпанію для резервування квитків та інші. Всі ці проблеми можуть вирішуватися по-різному, але якщо брати до уваги теоретичний підхід з наукової точки зору, то в даному випадку для вирішення цих питань застосовують моделі теорії черг або оптимального обслуговування. “Принципова проблема полягає в урівноваженні затрат на додаткові канали обслуговування та втрат від обслуговування на рівні нижчому за оптимальний” – стверджує Мескон. Моделі черг надають керівництву інструментарій для визначення оптимальної кількості каналів обслуговування, котрі необхідно мати, щоб збалансувати витрати у випадках надто малої і надто великої їх кількості.Серед інших моделей, які не обійшла “королева наук” – математика, величезне практичне значення має теорія ігор. Про сферу застосування даної моделі (як і про інші моделі) буде сказано в наступному розділі. Отже слід розкрити, що таке гра і які загальні принципи її проведення. На змістовному рівні під грою можна розуміти взаємодію декількох осіб (гравців), які мають кінцевий стан (виграш), якого добивається кожен гравець, але не кожен може добитися. Прикладом гри може слугувати боротьба декількох фірм за державне замовлення. В залежності від кількості гравців в грі може існувати якась скінченна кількість ходів кожного гравця. Послідовність ходів гравців, яка називається партією, призводить гру до кінцевого стану. Якщо гра складається лише з двох гравців, то схему такої гри подають у вигляді таблиці – платіжної матриці (назва говорить сама за себе – платіж, що сплачується 1-им гравцем 2-му, якщо 2-й виграє). Нерідкі випадки, коли по завершенню гри жоден з гравців не отримує ані виграшу, ані програє. Такий випадок носить назву гри двох осіб з нульовою сумою. Важливим поняттям теорії ігор є поняття стратегії – встановлений гравцем метод вибору ходів протягом гри.
Розглянемо приклад вирішення задачі теорії ігор.
¨ Приклад. “Я думаю про те, якби змінити розташування мого автомобільного салону по причині близького розташування конкурента. Якщо я зміню розташування і він теж змінить, то я ризикую втратити пів-мільйона доларів від чистого продажу. Якщо я перерозташуюсь, а він ні, я зароблю на цьому мільйон від чистого продажу. Якщо я залишусь там де є, а він переїде, я зароблю півтора мільйони, але якщо я залишусь і він теж, то я втрачаю мільйон. Якби ж я міг правити світом, я б залишився там де є, а його примусив би переїхати, бо в такому разі мене чекає найбільший прибуток. Однак я не можу ні примусити його, ні передбачити що там буде. Якщо ж я просто хочу мінімізувати втрати, я зміню своє розташування. Матриця рішень проілюструє мою ділему і можливе вирішення проблеми: