Математичні моделі й методи обгрунтування управлінських рішень, сфери їх використання в управлінській діяльності
Чи легко собі уявити сучасного українського підприємця, що сидить в своєму офісі та креслить на папері симплекс-таблицю? Звичайно, що ні. Але в розвинених західних країнах не лише на фірмах створюються економетричні, аналітичні відділи, але й цілі науково-дослідні інститути працюють над розробками математичних моделей, які потім упішно використовуються в економіці, менеджменті, фінансовій та банківській сферах тощо. Чому ж нашій країні таке низьке місце приділяється даній методології? Справа в тому, що поняття «менеджмент» та «менеджер» для наших підприємців мають зовсім не той відтінок, який їм слід би мати. Після розпаду СРСР все більш менш активне людство почало оволодівати підприємницьким сектором економіки. З’явилося багато до цього часу невідомих термінів: бартер, біржа, холдінг, дивіденд, менеджер, брокер і ще дуже багато інших. В старій системі освіти цими термінами не оперували, а американська наука менеджмент взагалі була чужою. Як правило в більшості випадків підприємницький сектор окупували ті люди, які дуже віддалені від економічних та управлінських знань. Тому про раціональні технології прийняття управлінських рішень говорити не має сенсу. Це прийде і в нашу країну. Але не через рік і не через два, а з лише з тим поколінням менеджерів, яке оволодіває цими знаннями вже тепер на високому рівні. Не дарма часто чуємо і абсурдні вислови, коли наприклад касир називається менеджером по продажу і т.ін.
Давайте розглянемо застосування вищеперелічених моделей, нехтуючи сучасними умовами. Отже, почнемо спочатку. Ми починали розгляд моделей з моделі лінійного програмування. Різновидом цієї моделі є транспортна задача, яка на мою думку представляє найбільший інтерес в сучасному малому бізнесі. Підприємець, нехтуючи побічними факторами, може легко побудувати дану модель і тим самим збільшити приботок та мінімізувати витрати палива та робочого часу на перевезення. Що стосується динамічного програмування, то вище мною вже розглядався досить життєвий приклад про розподіл капіталовкладень.
Досить складну побудову має модель управління запасами, яка повинна застосовуватися для вирішення проблемних ситуації на підприємствах практично всіх галузей. Наведемо приклад:
Нехай q-обсяг замовлення, q0-оптимальний обсяг замовлення, Si-рівень запасів до початку і-го інтервалу, tS-інтервал часу між двома замовленнями, S0-оптимальний рівень запасів до початку деякого інтервалу, tS0-оптимальний інтервал часу між замовленнями, T – період часу, для якого шукається оптимальна стратегія, R – повний попит за час Т, С1 – вартість зберігання одиниці продукції за одиицю часу, С2 – штраф за нестачу одиниці продукції, СS – вартість замовлення, вартість запуску партії у виробництво, Q – очікувані сімарні затрати.
Нехай фірма повинна постачати своїи клієнтам R виробів рівномірно протягом інтервалу Т. Нестача не допускається, тобто штраф С2 нескінченно великий. Змінні затрати складаються з затрат на зберігання готового продукту і затрат на запуск у виробництво чергової партії виробів. Зрозуміло, що число потрібних партій R/q, tS=(Tq/R)/ Якщо на початку інтервалу на складі q виробів, в кінці – нуль, відвантаження йде рівномірно, то середній запас q/2, затрати на зберігання: 0,5C1qtS, загальна вартість створення запасів в інтервалі ts буде 0,5C1qtS+CS, а за Т повна вартість Q=(0,5C1qtS+CS)R/q=(0,5C1qTq/R+CS)R/q=0,5C1Tq+CSR/q.
Розв’язок цієї задачі нескладно отримати з рівняння dq/dQ=0.
[8, с.45].Особисто мені дуже сподобався приклад з теорії ігор з використанням матриці рішень. Таких прикладів може бути безліч, але не всі вони завжди мають оптимальний роз’вязок. Якщо ми пригадаємо приклад з автомобільним салоном, то там гравець поводив себе дуже обережно, обираючи стратегію найменшого, але 100%-во гарантованого прибутку. На практиці ж найчастіше підприємець або ОПР грає на власний ризик з метою отримати максимум і втратити мінімум. При чому побудувати ігрову матричну модель дуже важко, бо не завжди ясно, чи враховано всі стратегії твого конкурента чи ні. Дуже багато життєвих прикладів розглядається американськими авторами в підручниках “Основи менеджменту” та “Методи прийняття рішень” [5 і 9], з яких стає зрозуміло, що в багатьох західних компаніях працюють цілі відділи, очолювані професійними економетристами, які розробляють цілі проекти математичного моделювання в організаціях. Недарма в цих організаціях щорічно зростають показники ефективноств їх діяльності. Науково-дослідні інститути закордоном працюють над новими моделями, які раніше чи пізніше пристосуються до практики управління.
Щоб якимось чином впорядкувати та зробити більш наочним питання про сфери застосування тих чи інших моделей і методів наведемо таблицю (див. табл.7).
Таблиця 7:
Сфери застосування моделей і методів обгруниування управлінських рішень.