Високотемпературна зверхпровідність
N(t)=t1/2, t<1 (1.2.8)
N(t)=t-1 , t1
Для надпровідникової плівки, товщина якої hL поверхневий імпеданс Z рівний її хвильовому імпедансу Z=W. Використовуючи (1.2.4) для дійсної частини Z отримаємо [ 15 ]:
, L<<N. (1.2.9)
Удосконалення технології росту кристалів і методики вимірювань дозволить отримувати значення R, близькими до теоретичних розрахунків, зроблених на основі [ 14 ]
1.3. Поняття поверхневого iмпедансу.Вище сказане у п.1.1 вiдносилось до випадку постiйного магнiтного поля та струму. Для даної роботи бiльш актуальним є випадок змiнного НВЧ поля та струму.
Поверхневий iмпеданс є однiєю з найважливiших характеристик металiв та надпровiдникiв. Вiн визначає амплiтуднi i фазовi спiввiдношення між електричними і магнітними полями на поверхні, а отже i всi енергетичнi характеристики взаемодiї поверхонь з електромагнiтними полями [3].
В дiапазонi НВЧ для металiв i надпровiдникiв є характерною мала величина вiдстанi, на яку в них проникає електромагнiтне поле, в порівнянні з довжиною хвилi у вiльному просторi. Мала глибина проникнення означає, що похідні компонент електромагнiтного поля в серединi металу в напрямку нормалi до поверхнi великі порiвняно iз похідними в тангенцiйних напрямках, тому електромагнітне поле поблизу поверхні можна розглядати як поле плоскої хвилі.
Для введення поверхневого iмпедансу розглянемо випадок, коли металева поверхня спiвпадає з площиною XY, а метал займає напiвпростiр в напрямку осi z (мал.1.3.1.). Метал будемо вважати однорідним , ізотропним і лінійним.
Рiвняння Максвела, нехтуючи струмом зміщення, для комплексних амплiтуд можна записати:
(1.3.1)
Рис.1.3.1. До введення поняття поверхневого імпедансу.
Як було раніше вказано, закон змiни електромагнiтного поля можна взяти у виглядi плоскої хвилі, тобто eіt.
Iз врахуванням того, що значення нормальних похiдних компонент поля в металi значно бiльшi тангенцiйних, з двох останнiх рiвнянь (1.3.1) i рiвняння div j=0 , отримаємо:
,
, (1.3.2.)
,
що стосовно до нормальних компонент змiнних полiв означає, що Еn0, Hn0, jn0. Нехтуючи тангенцiйними похiдними з перших двох рiвнянь (1.3.1) витiкає
, (1.3.3)
,