Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією
рис. 7.12
Приклад.
Обчислити невласний інтеграл або встановити його розбіжність:
а) б)
в) д)
а) За формулою (53) маємо
Отже інтеграл а) збігається.
б)
Оскільки ця границя не існує при а → -∞, то інтеграл б) розбіжний.
в)
Отже інтеграл в) розбіжний,
г) Якщо = 1, то
Якщо ≠ 1, то
Отже інтеграл г) є збіжним при > 1 і розбіжним при ≤ 1.
У розглянутих прикладах обчислення невласного інтеграла грунтувалося на його означенні. Проте у деяких випадках немає необхідності обчислювати інтеграл, а достатньо знати, збіжний він чи ні. Наводимо без доведення деякі ознаки збіжності.
Теорема 1. Якщо на проміжку [а; +∞) функції f(x) і g(x) неперервні і задовольняють умову 0 ≤ f(x) ≤ g(x), то із збіжності інтеграла
(56)
випливає збіжність інтеграла
(57)
а із розбіжності інтеграла (57) випливав розбіжність інтеграла (56).
Наведена теорема має простий геометричний зміст (рис. 7.13); якщо площа більшої за розмірами необмеженої області є скінченне число, то площа меншої області є також скінченне число; якщо пло¬ща меншої області нескінченно велика величина, то площа більшої області є також нескінченно велика величина.
Приклад
Дослідити на збіжність інтеграли:
а) ;