Зворотний зв'язок

Числові послідовності

Якщо число є границею послідовності , то всі члени цієї послідовності, номери яких знаходяться у довільному - околі точки. Що стосується членів послідовності номери яких то про їх розміщення на числовій осі нічого не можна сказати, вони можуть знаходитися як всередині - околу точки, так і поза ним. Проте у всякому разі поза довільним - околом точки може бути розміщене тільки скінчене число членів послідовності.

3. Властивості збіжних числових послідовностей

Введемо поняття збіжних послідовностей та подамо ряд їх властивостей, які будемо формулювати у вигляді теорем.

Означення . Числова послідовність, яка має границю, називається збіжною, а яка не має границі, - розбіжною.

Теорема 1. Послідовність може мати тільки одну границю.

Теорема 2. Якщо послідовність має границю, то вона обмежена.

Зауваження . Оберненого твердження цієї теореми не існує.

Так, послідовність є обмежена, але вона не має границі.

Теорема 3. Якщо і то й члени послідовності починаючи з певного номера і для всіх наступних номерів, будуть більші за (менші за ).

Наслідок 1. Члени послідовності яка має границю, починаючи з певного номера, мають знак цієї границі.

Наслідок 2. Якщо дві послідовності і при кожному значенні задовольняють нерівності і то

Зауваження . Якщо члени послідовностей і що мають границі, задовольняють при всіх нерівності то

Теорема 4. Нехай члени послідовностей , , при всіх значеннях задовольняють нерівності і Тоді

4. Нескінченно малі та нескінченно великі числові послідовності

Введемо поняття нескінченно малих та нескінченно великих послідовностей і встановимо зв'язок між ними.

Означення. Числова послідовність називається нескінченно малою, якщо

(5.5)

що те саме при

Означення. Числова послідовність називається нескінченно великою, якщо

(5.6)

Цей вираз записують так:

Теорема 1. Якщо послідовність нескінченно мала і при всіх то послідовність - нескінченно велика. Якщо послідовність нескінченно велика і при всіх то послідовність - нескінченно мала.

Теорема 1. Для того щоб послідовність мала границю, яка б дорівнювала необхідно і достатньо, щоб існувала така нескінченно мала послідовність що


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат