Числові послідовності
Послідовність називається необмеженою, якщо
Приклади .
1. Нехай Тоді Отже, послідовність є обмежена.
2. Розглянемо послідовність Тут Яке б число ми не взяли, знайдеться таке натуральне число, наприклад , коли Отже, задана послідовність не є обмежена .
Зауваження. Обмежена послідовність не є обов'язково монотонною, і навпаки, не всяка монотонна послідовність є обмежена. Так, послідовність є обмежена , але не є монотонна; послідовність є монотонна, але не є обмежена; послідовність є і необмежена, і немонотонна; послідовність є обмежена і монотонна.
2. Границя числової послідовності
Дамо означення границі послідовності та розглянемо геометричну ілюстрацію цього поняття.
Означення . Стале число називається границею числової послідовності , якщо для будь-якого як завгодно малого додатного числа існує таке натуральне число що для всіх виконується нерівність
(5.2)
Той факт, що є границею послідовності символічно
записується так:
або при
Іншими словами, число називається границею послідовності якщо . (5.3)
Приклад. Довести, що Знайти номер такий, коли при
Р о з в ' я з о к. Згідно з означенням границі треба показати, що
(5.4)
Для виконання нерівності (5.4) треба , щоб
або .
Отже, існує число ,а саме коли при виконується нерівність(5.4). Тому Знайдемо залежно від конкретно заданого . Нехай тоді
Тому нерівність
справедлива для всіх
Розглянемо геометричну ілюстрацію того факту, коли єграницею числової послідовності . Візьмемо на числовій осі точку з абсцисою і відкладатимемо точки з абсцисами
Тоді нерівність (5.3) означає, що відстань між точкою при і точкою повинна бути меншою за . Отже, всі члени послідовності починаючи з повинні знаходитися в інтервалі Інтервал є - околом точки .