Векторна алгебра і деякі її застосування
b) прямокутна декартова система координат у просторі.
Вісь 0х називають віссю абсцис; 0у – вісь ординат; 0z – вісь аплікат. Орт осі 0х позначають , орт осі 0у – вектор , орт осі 0z – вектор .
Упорядкована пара чисел (х,у), що відповідає точці М площини х0у, називається декартовими прямокутними координатами точки М, це позначають М(х,у).
Упорядкована трійка чисел (х,у,z), що відповідає точці М простору 0zух, називається координатами точки М декартової прямокутної системи координат у просторі, це позначають М(х,у,z).
Відмітимо, що існують інші системи координат на площині та у просторі.Дамо поняття проекції вектора на вісь. Нехай заданий вектор та вісь l. З точок А і В опускаємо перпендикуляри на вісь l. Одержимо точки А1 та В1 – проекції точок А та В.
Означення 2. Проекцією вектора на вісь називається довжина вектора , яка взята із знаком “+”, якщо напрям співпадає з напрямом осі та із знаком “-“, якщо напрями протилежні (див. Мал.4).
Позначають: пр1 .
Означення 3. Кутом між двома векторами (або між вектором та віссю) називають найменший кут між їх напрямами при умові, що вектори зведені до спільного початку (див. Мал.4).
Знайдемо пр1 :
У випадку а) маємо:
У випадку b) маємо:
Таким чином, проекція вектора на вісь дорівнює добутку довжини вектора на косінус кута між вектором і віссю.
Означення 4. Координатами називаються проекції вектора на осі координат.
Нехай вектор має координати ах, ау, аz тобто = (ах, ау, аz) і утворює з осями координат кути тоді, називають напрямними косінусами вектора . З попередніх формул маємо:
Розглянемо вектор , де М1(х1,y1) – початок вектора, М2(х2,y2) – кінець вектора (див.Мал.5). в цьому випадку
тобто координати вектора - це впорядкована пара чисел (х2 – х1; y2 – y1).
Аналогічно одержуємо, що координатами вектора у просторі буде впорядкована трійка чисел (х2 – х1; y2 – y1; z2 – z1).
Отже, можна сформулювати правило:
Координати вектора дорівнюють різниці відповідних координат кінця та початку вектора.
Наприклад, вектор , початок якого знаходиться в точці М1(2,-3,0), кінець – в точці М2(1,1,2), має координати
= (1-2; 1+3; 2-0) = (-1; 4; 2)
Зауваження. Вектор ( де точка 0 – початок координат) називають радіусом-вектором точки А і позначають . Координати вектора співпадають з координатами точки А.