Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність
Зіставляючи обидва факти, приходимо до висновку, що величина монотонна і разом з тим обмежена змінна, том вона, прямує до певної скінченої границі , при чому ця границя, очевидно, більша за а1 – а2 і не перевищує а1:
а1 – а2 < < а1.
Отже, напевне 0 < < а1.
Розглядаючи вже тепер частинну суму непарного порядку +1, маємо:
= + а2к+1.
Отже,
Остаточно приходимо до висновку, що існує єдина границя:
(0 < S < a1),
коли індекс n – будь-яке натуральне число як парне, так і непарне, що доводить теорему.
Наслідок. За умовою теореми Лейбніца остаточна S – Sn = rn менша за абсолютним значенням, ніж абсолютне значення першого з відкинутих членів:
і має знак цього члена.
Доведення. Маємо:
Ряд в останніх дужках сам по собі є знакозмінний і задовольняє теорему Лейбніца, тому
причому
Отже, якщо перший з відкинутих членів непарний, то представляє S з недостачею. Похибка має знак плюс. Якщо ж перший відкинутий член – парний, то , представляє S з надлишком. Похибка має знак мінус. В обох випадках, як бачимо, похибка має знак першого відкинутого члена і менша за абсолютним значенням, ніж абсолютне значення першого з відкинутих членів.
Диференціювання та інтегрування
степеневих рядів.
План.
1. Знаходження сум степеневих рядів використовуючи почленне диференціювання та інтегрування.Л-ра: Методичні вказівки до вивчення теми “Ряди.” Укладачі: В.О.Борисенко, В.В.Левчук, В.С.Мартиненко, В.Д. Подільчук. КДТЕУ.К., 1992 р. ст. 22-23.
Диференціювання степеневих рядів.
Теорема. Якщо степеневий ряд
має інтеграл збіжності (-р, р), то ряд
,