Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність
є знакододатний. Порівнюючи його з рядом
маємо
Ряд (3) збіжний, як ряд Діріхле-Рімана при , отже, збіжним є ряд (2). Тоді за доведеною теоремою і за означенням ряд (1) є абсолютно збіжним.
Оскільки ряд, члени якого – абсолютні значення членів будь-якого ряду є знако-додатний, то, очевидно, щоб дослідити, чи будь-який ряд є абсолютно збіжним, ми можемо використовувати ознаки збіжності, виведені для знакододатних рядів, замінивши у відповідних виразах члени даного ряду їх абсолютними значеннями. Так, ознака Даламбера збіжності ряду запишеться тоді у вигляді ознака Коші – у вигляді: і т.п.
Означення. Якщо ряд (*) збіжний, а ряд розбіжний, то даний ряд (*) називається умовно збіжним.
Отже, ряд
умовно збіжний,
Так само ряд
умовно збіжний, бо ряд
є ряд Діріхле-Рімана, в якому
Знакочергуючі ряди. Ознака Лейбніца.
План.
1.Означення знакочергуючого ряду.
2.Ознака Лейбніца.
3.Оцінка залишку знакочергуючого ряду, збіжного за ознакою Лейбніца.
Л-ра: Методичні вказівки до вивчення теми “Ряди”. Укладачі: В.О.Борисенко, В.В.Левчук, В.С.Мартиненко, В.Д.Подільчук. КДТЕУ. К, 1992 р. ст. 16-19.
Означення. Знакозмінними рядами називаються ряди виду:
де - додатні числа.
Теорема Лейбніца. Якщо в знакозмінному ряді абсолютне значення загального члена монотонно прямує до нуля (тобто до того ж ), тоді знакозмінний ряд збігається, причому сума його має числове значення, проміжне між нулем та першим членом
Доведення. Розглянемо спочатку частинну суму парного порядку , причому запишемо її в двох різних виглядах:
1 .
Помічаємо, що чим більше К, тим більше пар, але кожна пара додатна, отже, монотонно зростає при збільшенні К.
2З другого боку
Бачимо, що < , для всіх значень k > 1. Отже, обмежена зверху.