Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність
План.
1.Означення закономірного ряду.
2.Теорема Коші.
3.Абсолютна та умовна збіжність.
Л-ра: Методичні вказівки до вивчення теми “Ряди”. Укладачі: В.О.Борисенко, В.В.Левчук, В.С.Мартиненко, В.Д.Подільчук. КДТЕУ. К, 1992 р. ст. 16-19.
Теорема. Якщо в ряді з додатними членами загальний член, починаючи з певного значення п, задовольняє нерівність де q – стале число, менше за одиницю, то ряд збігається.
Коли ж навпаки, починаючи з певного значення п, маємо то ряд розбігається.
Доведення. У першому випадку маємо, починаючи з певного значення п,
Отже, збіжність ряду й тут безпосередньо встановлюється порівнянням із спадною геометричною прогресією, знаменник якої q. Варто зауважити, що нерівність
характеризує при цьому “швидкість” збіжностей даного ряду порівняно з геометричною прогресією.
В другому випадку матимемо з певного моменту , отже, ряд напевне, розбігається, бо навіть основна необхідна умова збіжності не виконується.
Наслідок. Якщо існує , то при r < 1 ряд напевне збігається. Випадок r = 1 і тут взагалі є сумнівний.
Доведення.
Взявши u тут якесь число q, проміжне між r та 1 ( ), ми з певного моменту матимемо – в першому випадку:
Отже, ряж збігається; а в другому: отже, ряд розбігається.
Часто питання про збіжність ряду, що має члени як додатні, так і від’ємні, можна звести до питання про збіжність знакододатного ряду. Розглянемо таку теорему.
Теорема. Ряди напевне збігається, якщо збігається ряд
Доведення. Для кожного можна знайти таке , при якому для і при буде:
Але тоді й поготів
Але це й доводить теорему.
Означення. Збіжний ряд називається абсолютно збіжним. Якщо збігається також і ряд
Розглянемо, наприклад, ряд
Він ні знакододатний, ні знакозмінний. Ряд