Зворотний зв'язок

Монотонність функції, необхідні і достатні умови. Eкстремум функції однієї та декількох змінних.. Необхідні і достатні умови. Найбільше і найменше значення функції на замкнутому проміжку і в обмеженій замкнутій області

Теорема 2. У точці екстремуму функції кількох змінних кожна її частинна похідна першого порядку або дорівнює нулю, або не існує.

Д о в е д е н н я. Нехай функція в точці має максимум – для конкретності. Зафіксуємо значення всіх змінних, крім однієї, наприклад , поклавши їх рівними між собою.

Тоді функція стає функцією однієї змінної

За умовою теореми функція має максимум, тобто,Остання нерівність означає, що функція як функція однієї змінної в точці має максимум. На основі вище доведеної теореми виводимо, що в точці похідна дорівнює нулю або не існує. Аналогічно доведемо, що і всі інші частинні похідні першого порядку в точці дорівнюють нулю або не існують.

Наслідок. В точці екстремуму диференційованої функції виконуються рівності

Означення. Точки, в яких частинні похідні першого порядку деякі функції дорівнюють нулю або не існують, називаються критичними точками.

Із доведеної теореми витікає, що екстремум функції кількох змінних може досягатись лише в критичних точках.

Для диференційованої функції двох змінних критичні точки знаходяться із системи рівнянь

Приклад.

Знайти критичні точки функції

Р о з в ’ я з о к. Прирівнюючи до нуля частинні похідні даної функції, одержуємо систему рівнянь для знаходження координат критичних точок:

Функція має чотири критичні точки:

Достатні умови існування екстремуму.

Теорема. Нехай є критична точка функції , яка в цій точці є неперервною, і нехай існує окіл точки , в якому має похідну , крім, можливо, точка . Тоді:

1) якщо в інтервалі похідна , а в інтервалі похідна , то є точкою максимуму функції ;

2) якщо в інтервалі , а в інтервалі то є точкою мінімуму функції ;

3) якщо в обох інтервалах і похідна має той самий знак ( набуває або тільки додатних, або тільки від’ємних значень), то не є екстремальною точкою функції .

Перше правило дослідження функції на екстремум. Щоб дослідити функцію на екстремум, треба:

1) знайти стаціонарні точки даної функції (для цього слід розв’язати рівняння , причому з його коренів вибрати тільки дійсні і ті, які є внутрішніми точками області існування функції).

2) знайти точки, в яких похідна не існує (функція в цих точках існує);

3) у кожній критичній точці перевірити зміну знака похідної першого порядку.

Приклади.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат