Зворотний зв'язок

Векторна функція скалярного аргументу. Похідна, її геометричний і механічний зміст. Кривизна кривої

План

•Диференціал дуги

•Кривизна плоскої кривої

•Векторна функція скалярного аргументу

•Кривизна плоскої кривої

•Кривизна просторової кривої

•Кручення просторової лінії

•Формули Серре-Френе

1. Диференціал кривої

Поняття довжини кривої буде розглянуто в розділі інтегрального числення. Криві, для яких можна установити поняття довжини, називають в математичному аналізі спрямними.

Умова спрямності кривої для плоскої кривої, заданої параметричними рівняннями , полягає в такому: на спрямному відрізку кривої функції і мусять мати неперервні похідні за параметром : . Аналогічною є умова спрямності просторової кривої, заданої рівняннями ; вона полягає в неперервності похідних .

Для всякої спрямної кривої як просторової, так і плоскої, наслідком її спрямності є така геометрична властивість: границя відношення нескінченно малої дуги кривої до стягуючої її хорди дорівнює одиниці за умови, що хорда стикується в точку.

Якщо довжину малої дуги кривої позначити через , а довжину відповідної хорди – через

Виходячи саме з цієї властивості, знайдемо вирази для диференціала дуги як плоскої, так і просторової кривої.

На плоскій спрямній кривій, рівняння якої ,

візьмемо дві сусідні точки. та , що

відповідають значенням параметра та

Довжина хорди знаходиться за формулою

Похідна від довжини дуги кривої за параметром :

Замінимо його виразом за формулою

Якщо крива задана рівнянням , то можна прийняти за параметр кривої: .

Диференціал дуги

Якщо крива задана рівнянням в полярних координатах , то за параметр кривої можна прийняти полярний кут


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат