Зворотний зв'язок

Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа. Дії над комплексними числами. Формули Ейлера. Многочлени . Розклад многочлена на множники.

1. Комплексні числа

1.1. Алгебраїчна форма комплексного числа

Як відомо, в області дійсних чисел не можна добути корінь парного степеня з від’ємного числа, бо не існує такого числа, квадрат якого був би від’ємним. Тому вже квадратне рівняння в області дійсних чисел не має коренів, якщо його дискримінант від’ємний. Вказані обставини приводять до необхідності введення нових чисел так, щоб усі дії, властиві для дійсних чисел, були правильними і для нових чисел, але при цьому, щоб і дія добування кореня була можливою без будь-яких обмежень.

Очевидно, що перш за все треба ввести таке число, щоб його квадрат дорівнював –1. Позначивши його через , одержимо Звідси. Величина називається умовною одиницею. Сам термін “уявне число” виник історично і зберігався до цього часу, хоч тепер уже ясно, що ці числа цілком реальні. Користуючись ознакою уявної одиниці, можна скласти таблицю степенів числа :

де - ціле додатне число.

Числа вигляду, де - дійсне число, називаються уявними числами, а числа вигляду - комплексними, де i – дійсні числа.

Побудуємо дві взаємно перпендикулярні осі, одну з яких назвемо уявною, а іншу – дійсною. Відклавши на дійсній осі відрізок довжиною , а на уявній – відрізок довжиною , можна побудувати точку (рис. 8.1), яка і є зображенням комплексного числа. При маємо зображення дійсного числа на осі (дійсна вісь), а при маємо зображення чисто уявного числа на осі (уявна вісь). Площина називається комплексною. Кожній точці на комплексній площині відповідає одне й тільки одне комплексне число , і навпаки, кожному комплексному числу відповідає одна й тільки одна точка комплексної площини. Комплексне число можна також зображати як вектор

Інакше кажучи, між комплексними числами й відповідними точками (векторами) комплексної площини існує взаємно однозначна відповідність.

Із геометричної інтерпретації комплексного числа випливає, що числа і рівні тоді і тільки тоді,коли і.

Приклад. За яких умов комплексні

Р о з в ’ я з о к. З умови рівності двох комплексних чисел одержуємо:

Розв’язавши цю систему рівнянь, знаходимо і . Отже, задані комплексні числа рівні тоді й тільки тоді, коли 1) і

Розглянемо дії над комплексними числами, заданими в алгебраїчній формі.

а). Додавання і віднімання. Сумою двох комплексних чисел і називається число , а їх різниця запишеться так: .

Додавання і віднімання комплексних чисел здійснюється за правилами додавання і віднімання векторів.

б). Множення двох комплексних чисел і здійснюється так само, як і множення двочленів:

Числа вигляду і називаються комплексно

спряженими. Їх добуток є дійсне число

в). Ділення. Нехай потрібно число поділити на число,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат