Зворотний зв'язок

Відповідності, функції, відображення

1. Відповідності та композиції відповідностей

1. Визначити R(a), R-1(b), R(X), R-1(Y), де

1)R={(1,1), (1,2), (2,2), (2,3), (3,1)}, a=1, b=2, X={2, 3}, Y={2, 3};

2)R={(1,1), (1,2), (2,2), (2,3), (3,1)}, a=2, b=1, X={1, 3}, Y={1, 3};

3)R={(1,1), (1,3), (2,2), (3,2), (3,3)}, a=1, b=2, X={1, 3}, Y={1, 3};

4)R={(1,1), (1,3), (2,2), (3,2), (3,3)}, a=3, b=3, X={1, 2}, Y={1, 2};

5)R={(1,2), (1,3), (2,3), (3,1), (3,3)}, a=1, b=1, X={2, 3}, Y={2, 3};

6)R={(1,2), (1,3), (2,3), (3,1), (3,3)}, a=2, b=3, X={1, 3}, Y={1, 2};

7)R={(1,3), (2,2), (2,3), (3,2), (3,3)}, a=3, b=3, X={1, 2}, Y={1, 2};

8)R={(1,3), (2,2), (3,1), (3,2), (3,3)}, a=3, b=2, X={1, 2}, Y={1, 3};

9)R={(1,1), (1,2), (2,2), (2,3), (3,3)}, a=2, b=2, X={1, 3}, Y={1, 3};

2. Побудувати композицію RP відповідностей R і P, де RAB, PBC:

1)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (y,1), (z,1), (z,2)}, P={(1,7), (2,5), (3,5), (3,6), (3,7)};

2)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (x,3), (y,1), (z,2)}, P={(1,6), (2,5), (2,6), (3,6), (3,7)};

3)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (y,1), (y,2), (z,3)}, P={(1,5), (1,6), (1,7), (2,6), (2,7)};

4)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,3), (y,1), (y,3), (z,2)}, P={(1,7), (2,5), (2,6), (3,5), (3,7)};

5)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (x,3), (z,2), (z,3)}, P={(1,5), (1,6), (2,7), (3,6), (3,7)};

6)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (y,1), (y,2), (y,3)}, P={(1,6), (1,7), (2,5), (3,6), (3,7)};

7)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,3), (y,1), (z,1), (z,3)}, P={(2,5), (2,6), (2,7), (3,5), (3,6)};

8)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (y,1), (z,2), (z,3)}, P={(1,7), (2,5), (3,5), (3,7)};

9)A={x, y, z}, B={1, 2, 3}, C={5, 6, 7}, R={(x,1), (x,2), (y,1), (z,1)}, P={(1,5), (1,6), (2,5), (3,6), (3,7)};

3. Довести, що:

4. Нехай RAA. Довести, що R=iA тоді й тільки тоді, коли RR1=R1R=R1 при будь-якому R1AA.

5. Довести, що за довільних відповідностей R, P, Q:

Для завдань (5)–(6) навести приклад R, P, Q, таких, що включення не можна замінити рівністю.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат