Зворотний зв'язок

Математичне моделювання та диференціальні рівняння

З формули (1.6) видно, що при . При цьому можливі випадки

Рівняння (1.5) описує.

Можна говорити і про більш складні рівняння, системи рівнянь.

Розглянемо більш детально двох видову модель «хижак-жертва», яка була побудована для виявлення коливань рибних уловів в Адріатичному морі.

Нехай –число великих риб-хижаків, – число малих риб-жертв в момент часу , тоді число риб-хижаків буде рости до тих пір, поки у них буде їжа. Якщо корму не буде вистачати, то кількість риб-хижаків буде зменшуватися і тоді, починаючи з деякого моменту, буде рости число риб-жертв. Модель має вигляд

де – додатні константи.

В (1.7) доданок виражає залежність приросту великих риб від числа малих, – зменшення числа малих риб від великих.

1.3. Закони Кеплера руху планет.

Згідно закону всесвітнього тяжіння два тіла, які знаходяться на віддалі друг від друга і які мають маси і притягаються з силою

де - константа тяжіння.

Опишемо рух планети з масою навколо Сонця маси . Вплив других планет на них не будемо враховувати. (Мал 1.1).

Сонце знаходиться в початку координат, а планета має положення в момент часу . Використавши другий закон Ньютона маємо:

Враховуючи, що

Позначимо , прийдемо до системи

Без обмеження загальності візьмемо початкові умови:

Перейдемо до полярних координат:

Позначивши отримані вирази в (1.10) будемо мати

Помножимо перше рівняння на ,друге на і складемо:

Домножимо перше рівняння на ,друге на і складемо:

(1.13)

Перепишемо в нових змінних умови (1.11):

Рівняння (1.13) перепишемо у вигляді

Звідки маємо

Константа має цікаву геометричну інтерпретацію. З курсу математичного аналізу відомо, що площа сектора обчислюється за формулою


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат