Математичне моделювання та диференціальні рівняння
З формули (1.6) видно, що при . При цьому можливі випадки
Рівняння (1.5) описує.
Можна говорити і про більш складні рівняння, системи рівнянь.
Розглянемо більш детально двох видову модель «хижак-жертва», яка була побудована для виявлення коливань рибних уловів в Адріатичному морі.
Нехай –число великих риб-хижаків, – число малих риб-жертв в момент часу , тоді число риб-хижаків буде рости до тих пір, поки у них буде їжа. Якщо корму не буде вистачати, то кількість риб-хижаків буде зменшуватися і тоді, починаючи з деякого моменту, буде рости число риб-жертв. Модель має вигляд
де – додатні константи.
В (1.7) доданок виражає залежність приросту великих риб від числа малих, – зменшення числа малих риб від великих.
1.3. Закони Кеплера руху планет.
Згідно закону всесвітнього тяжіння два тіла, які знаходяться на віддалі друг від друга і які мають маси і притягаються з силою
де - константа тяжіння.
Опишемо рух планети з масою навколо Сонця маси . Вплив других планет на них не будемо враховувати. (Мал 1.1).
Сонце знаходиться в початку координат, а планета має положення в момент часу . Використавши другий закон Ньютона маємо:
Враховуючи, що
Позначимо , прийдемо до системи
Без обмеження загальності візьмемо початкові умови:
Перейдемо до полярних координат:
Позначивши отримані вирази в (1.10) будемо мати
Помножимо перше рівняння на ,друге на і складемо:
Домножимо перше рівняння на ,друге на і складемо:
(1.13)
Перепишемо в нових змінних умови (1.11):
Рівняння (1.13) перепишемо у вигляді
Звідки маємо
Константа має цікаву геометричну інтерпретацію. З курсу математичного аналізу відомо, що площа сектора обчислюється за формулою