Зворотний зв'язок

Поняття функції

Вивчаючи те чи інше явище, ми, як правило, оперуємо кількома ве¬личинами, які пов'язані між собою так, що зміна деяких з них приво¬дить до зміни інших.

Такий взаємозв'язок у математиці виражається за допомогою функ¬ції. Цей термін вперше ввів Г. Лейбніц.

Приклади

1. Нехай електричне коло складається з джерела постійної напруги U і реоста¬та R. При зміні опору й змінюватиметься сила струму. Напруга U — величина стала (в даному колі), а опір R і струм І — змінні, причому І змінюється залежно від змі¬ни R за законом Ома: І = , тобто сила струму І є функція опору R.

2. Під час вільного падіння тіла пройдений шлях S залежить від зміни часу t. Зв'язок між змінними величинами S і t задається формулою

де g — прискорення при вільному падінні (стала величина). Величина S залежить від зміни величини t, тобто шлях S є функцією часу t.

Спільним у цих прикладах є те, що зв'язок між змінними величинами описується певним правилом (залежністю, законом, відповід¬ністю) так, що кожному значенню однієї величини (R, Р, t, d) від¬повідає єдине значення другої (I, V, S, l).

Дамо тепер означення функції. Якщо кожному числу х з деякої числової множини X за певним правилом поставлене у відповідність єдине число у, то кажуть, що у є функція від х і пишуть у = f(х), х Х. Це означення належить М.І. Лобачевському і Л. Діріхле.

Змінна х називається незалежною змінною, або аргументом, а змінна у — залежною змінною, або функцією; під символом f розуміють те правило, за яким кожному х відповідає у, або ті операції, які треба виконати над аргументом, щоб дістати відповідне значення функції.

Множина X називається областю визначення функції. Множина Y усіх чисел у, таких, що у= f (х) для кожного х X називається множиною значень функції, тобто

Іноді у означенні функції припускають, що одному значенню аргумента відповідає не одне, а кілька значень у або навіть нескінченна множина значень у. У цьому випадку функцію називають багато¬значною, на відміну від означеної вище однозначної функції. Прикла¬дами многозначних функцій є у = ± , у = Агсsіn х тощо. Надалі ми розглядатимемо лише однозначні функції.

У ширшому розумінні поняття функції вживається як синонім поняття відображення множини на множину.

Нехай задано дві непорожні множини X і Y з елементами х X і у Y і нехай перетворення f переводить х в у. Тоді це перетворен¬ня f (правило, закон, відповідність, відображення, залежність) нази¬вають функцією і пишуть

(X та Y множини деяких елементів, не обов'язково числові).

У цьому випадку, як і у випадку числових множин X та Y, ці множини називають областю визначення та множиною значень функції. Залежно від природи множини X та Y для функції f вживають різні назви. Так, якщо X та Y — множини дійсних чисел, то кажуть, що f — дійсна функція дійсного аргументу; якщо X — множина ком¬плексних чисел (гл. 7, п. 14), а Y — множина дійсних чисел, то f — дійсна функція комплексного аргументу; якщо X — множина функ¬цій, а Y — числова множина, то f називається функціоналом.

Порівнюючи означення функції, бачимо, що в першому з них під функцією у = f(х) розуміють її значення — число у. За другим означенням функція — це закон або правило f, за яким кожному елементу х X ставиться у відповідність єдиний елемент у Y. Таким чином, за першим означенням поняття функції зводиться до поняття змінної величини, а за другим — до поняття відповідності. Іноді поняття функції виражається і через інші поняття (наприклад, множину). Надалі користуватимемось першим означенням функції.

У курсі математичного аналізу розглядають функції, для яких область визначення X і множина значень Y складаються з дійсних чисел. Тому під поняттям «число», якщо не зроблено застереження, розумітимемо дійсне число.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат