Аналітична геометрія на площині
Наведемо ще деякі з рівнянь, які задають пряму на площині.
Пряма, яка проходить через дві задані точки (x1;y1) та (x2;y2):
, (2.3)
або, що те саме,
. (2.3¢)
Пряма, яка проходить через задану точку (x1;y1) паралельно до заданої прямої y=ax+b :
y-y1=a(x-x1) (2.4)
Пряма, яка проходить через задану точку (x1;y1) перпендикулярно до заданої прямої y=ax+b :
(2.5)
Рівняння прямої у відрізках
(2.6)
Переходи від одного вигляду рівняння прямої до іншого виконують за допомогою нескладних перетворень.
Приклад. Загальне рівняння прямої має вигляд 2x-y+2=0.
Перейдемо до рівняння прямої у відрізках:
-2x+y=2,
.
Перейдемо до рівняння з кутовим коефіцієнтом:
y=2x+2.
Візьмемо на нашій прямій дві точки, наприклад, (x1;y1)=(-1;0) та (x2;y2)=(0;2),і побудуємо рівняння прямої, яка проходить через ці дві точки:
.
Наведемо ще декілька формул щодо прямих на площині.
Кут між прямими y=a1x+b1 та y=a2x+b2 обчислюється за формулою
Прямі y=a1x+b1 та y=a2x+b2 отже, є паралельними, якщо a1=a2, та перпендикулярними, якщо a1×a2 = -1.
Точка перетину прямих є розв’язком системи рівнянь
.