ДИФЕРЕНЦІАЛ ФУНКЦІЇ
Реферат на тему:
ДИФЕРЕНЦІАЛ ФУНКЦІЇ
Нехай функція y = f (x) має в даній точці похідну
(1)
тоді
(2)
де а 0, якщо х 0.
Помноживши обидві частини (2) на Ах, дістанемо:
(3)
Перший з доданків лінійний відносно х і при х 0 та f'(x0) 0 є нескінченно малою одного порядку з х, тому що:
Другий доданок - нескінченно мала вищого порядку, ніж х, тому що:
Цей доданок не є лінійним відносно х, тобто містить х в степені, вищому від одиниці.
Тоді доданок f'(x)· x називається головною частиною суми двох нескінченно малих. У даному випадку це головна частина приросту функції у і називається диференціалом функції.
Диференціал функції визначається добутком похідної на приріст незалежної змінної і позначається dy або df(x).
Отже, маємо
dy = f'(x) · x(4)
Диференціалом dy називають також диференціал першого порядку. З виразу (4) бачимо що диференціал функції є функція двох незалежних змінних х і х. Якщо y = х, то у' = х' =1, тому dy = dx· x. Тобто диференціал незалежної змінної ототожнюється з її приростом, тобто диференціал незалежної змінної дорівнює приросту незалежної змінної.
На цій підставі для будь-якої диференційованої функції y = f (x) можемо формулу (4) записати так:
dy = f' (x) dx (5)
Останній вираз називатимемо канонічним виразом диференціала функції y = f (x). З (5) діленням на dх (dх 0), безпосередньо знаходимо:
(6)
Виходить, що похідну можна розглядати як відношення двох диференціалів. Тепер у позначенні похідної можемо надавати dy і dx самостійного значення:
Вираз (3) можемо записати ще так: