Зворотний зв'язок

Наближене обчислення визначених інтегралів, що не беруться через елементарні функції

Мал. 1

На практиці зазвичай беруть якщо відповідну середню ординату позначити через , то формула перепишеться у вигляді

. (1)

Надалі, кажучи про формулу прямокутників, ми будемо мати на увазі якраз цю формулу.

Геометричні міркування природньо приводять і до другої, часто використовуваємій наближеній формулі. Замінивши дану криву вписаною в неї ламаною, з вершинами у точках , где . Тоді наша криволінійна фігура заміниться іншою, яка складається із ряду трапецій (рис2.). Якщо, як і раніш рахувати, що

проміжок разбитий на рівні частини, то площі цих трапецій будуть

.

Мал. 2

Додаючи, прийдемо до нової наближеної формули

. (2)

Це так звана формула трапецій.

Можно показати, що при зростанні до нескінченності похибка формули прямокутників і формули трапецій нескінченно зменьшується. Таким чином, при достатньо великому обидві ці формули відтворюють шукане значення з довільним рівнем точності.

Параболічне інтерполювання.

Для наближеного обчислення інтеграла можно спробувати замінити функцію близьким до неї многочленом

(3)

і покласти

Можно сказати, що тут – при обрахуванні площі – дана крива замінюється на параболу - го порядку (3), в звязку з чим цем процес отримав назву параболічного интерполювання.

Сам вибір інтерполюючуго многочлена частіше всього виконують наступним чином. У проміжку беруть значень незалежної змінної і підбирають многочлен так, щоб при усіх взятих значеннях його значення співпадало зі значенням функції . Цією умовою, як ми знаємо, многочлен визначається однозначно, і його вираз даеться інтерполяціонною формулою Лагранжа:

При інтерполюванні виходить лінійний, відносно значень вираз, коефіцієнти якого вже не залежать від цих значень. Вирахувавши коефіціенти раз і назавжди, можно їх використовувати для будь-якої функції в даному проміжку .

В найпростішому випадку, при , функція просто замінюється сталою , де – будь-яка точка у проміжку , скажемо, середня: . Тоді наближено

(4)

Геометрично – площа криволінійної фігури замінюється тут площадью прямокутника з висотою, яка рівна середній її ординаті.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат