Особливості математичних методів, застосовуваних для вирішення економічних задач
Для загальної задачі можуть бути побудовані рекурентні співвідношення
1(x) = max {1(x1)}, (5)
0 <=X1<= X
k(x) = max {k(xk)+ k-1(x - xk)}. (6)
до = 2,3,... , N,
за допомогою яких знаходиться її рішення.
При виводі цих рекурентних співвідношень, по суті, використовувався наступний принцип, оптимальна стратегія володіє тим властивістю, що стосовно будь-якого початкового стану після деякого етапу вирішення сукупність наступних рішень повинна складати оптимальну стратегію. Цей принцип оптимальності лежить в основі всієї концепції динамічного програмування. Саме завдяки йому вдасться при наступних переходах випробувати не всі можливі варіанти, а лише оптимальні виходи. Рекурентні співвідношення дозволяють замінити надзвичайні-трудомісткі обчислення максимуму по N перемінним у вихідній задачі рішенням N задач, у кожній із який максимум знаходиться лише по однієї перемінної.
Таким чином, метод динамічного програмування дозволяє врахувати таку важливу особливість економічних задач, як детермінованість більш пізніх рішень від більш ранніх.
Крім цих двох, досить детально розроблених методів, в економічних дослідженнях останнім часом стали застосовуватися множина інших методів.
Одним із підходів до рішення економічних задач є підхід, заснований на застосуванні нової математичної дисципліни - теорії ігор.Суть цієї теорії полягає в тому, що гравець (учасник економічних взаємовідносин) повинний вибрати оптимальну стратегію в залежності від того, якими він представляє дії супротивників (конкурентів, чинників зовнішнього середовища і т.д.). У залежності від того, наскільки гравець інформований про можливі дії супротивників, гри (а під грою тут розуміється сукупність правил, тоді самий процес гри це партія) бувають відкриті і закриті. При відкритій грі оптимальною стратегією буде вибір максимального мінімуму виграшу (у термінах Моргерштерна - "максимина") із усієї сукупності рішень, поданих у матричній формі. Відповідно супротивник буде прагне програти лише мінімальний максимум ("мінімаск") який у випадку ігор із нульовою сумою буде дорівнює "максимину". У економіці ж частіше зустрічаються ігри з ненульовою сумою, коли виграють обидва гравці.
Крім цього ,в реальному житті число гравців рідко буває дорівнює усього двом. При більшому ж числі гравців з'являються можливості для кооперативної гри, коли гравці до початку гри можуть утворювати коаліції і відповідно впливати на хід гри.
Стратегії гравців не обов'язково повинні містити одне рішення, може бути так, що для досягнення максимального виграшу буде потрібно застосовувати змішану стратегію (коли дві або декілька стратегій застосовуються з якійсь імовірністю). Крім того в закритих іграх теж потрібно враховувати імовірність того або іншого рішення супротивника. Таким чином, у теорії ігор стало необхідним застосування апарата теорії імовірності, що згодом знайшов своє застосування в економічних дослідженнях у виді окремого методу - стохатистичного моделювання.
Утримання методу стохатистичного програмування перебуває у введенні в матрицю задачі або в цільову функцію елементів теорії імовірності. У цьому випадку звичайно береться просто середнє значення випадкового розміру, узяте щодо всіх можливих станів .
У випадку не жорсткої, або двохпідрядної задачі стохатистичного моделювання з'являється можливість редактування отриманого плану після того, як стане відомим стан випадкового розміру.
Крім цих методів застосовуються методи нелінійного, цілочисленого програмування і багато хто інші. Коротенько, сутність методу нелінійного програмування полягає в перебуванні або седловиннії точці, або загального максимуму або мінімуму функції. Основна складність тут у трудності визначення, чи є цей максимум загальним або локальним. Для цілочисленого моделювання основна трудність саме і полягає в трудності добору цілого значення функції. Загальним для застосування цих методів на сучасному етапі є можливість часткового зведення їх до задачі лінійного моделювання. Можливо, у недалекому майбутньому буде знайдене яке оригінальне рішення таких задач специфічними методами, більш зручними, чим сучасні методи рішення подібних задач (для який вони є), і більш точні, ніж наближені рішення методами лінійного програмування.