Коефіцієнт кореляції та детермінації
;
.
Помножимо чисельник і знаменник виразу для обчислення коефіцієнта кореляції на .і зробимо деякі перетворення
.
З того, що обидва значення та додатні, випливає, що знак коефіцієнта кореляції завжди збігається із знаком параметра а1.
Крім того, випливає, що значення коефіцієнта кореляції пов’язане із значеннями коефіцієнта регресії а1 та середніх квадратичних відхилень та .
Знаючи зв’язок між коефіцієнтом кореляції і коефіцієнтом регресії, розглянемо зв’язок між коефіцієнтом кореляції і коефіцієнтом детермінації. Нагадаємо формулу для розрахунку коефіцієнта детермінації:
Виконаємо прості перетворення з виразом чисельника:
.
Внесемо зміни до виразу коефіцієнта детермінації, враховуючи останні перетворення:
.
Оскільки , то .
Отже коефіцієнт детермінації дорівнює квадрату коефіцієнта кореляції. Тому коефіцієнт кореляції може розраховуватись за формулою:
, або ,
де σy2 – загальна дисперсія ознаки y, ,
σyx2 – середній квадрат відхилення фактичних значень ознаки y від теоретичних значень yx, .
Якщо коефіцієнт кореляції розраховується як корінь із коефіцієнта детермінації, то йому присвоюється той знак, який має коефіцієнт a1 , тобто коефіцієнт регресії в рівнянні прямолінійного зв’язку.
Величину 1–r2 називають коефіцієнтом залишкової детермінації. Вона характеризує частку варіації ознаки y за рахунок неврахованих факторів.
Індекс кореляції (R) використовується для вимірювання щільності криволінійного зв’язку і визначається аналогічно до коефіцієнта кореляції (r) за формулою:
.
Індекс кореляції приймає значенням від 0 до 1. Певного знака він не має, оскільки на різних відрізках кривої напрям зв’язку може змінюватись.
Індекс кореляції – умовна величина, розрахована лише по відношенню до певної кривої. ЇЇ значення може бути доведене до 1, якщо в якості кривої, що описує зв’язок, взяти параболу, в якій кількість параметрів доведена до кількості одиниць спостереження. Така крива пройде через всі точки графіка, всі відхилення фактичних значень результативної ознаки від теоретичних, розрахованих за рівнянням такої кривої, будуть дорівнювати 0, і тому величина індекса кореляції досягне 1. Однак, було б помилкою вважати, що це є ознакою того, що дана крива найкраще описує досліджувану залежність. Надто складні рівняння регресії як правило позбавлені реального економічного змісту, оскільки в них втрачається відмінність між нетиповим і суттєвим, а випадковість зводиться в ранг закономірності. Тому не доцільно надто ускладнювати рівняння кривої. Рівняння досліджуваного зв’язку має бути по можливості простим, щоб сутність зв’язку між змінними проявлялась досить чітко, а параметри рівняння піддавались певному економічному тлумаченню.