Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості. Формулювання теореми про існування границі монотонної послідовності і функції. Порівняння величин. Еквівалентні нескінченно малі в
1. Нехай . Тоді і в
точці є нескінченно малі функції. Знайдемо
Отже, в цьому випадку є нескінченно мала вищого порядку, ніж .
2. , , і - нескінченно малі при . Знайдемо
Отже, при є нескінченно мала вищого порядку, ніж .
Означення 3. Якщо
,
то називається нескінченно малою більш нижчого порядку малості, ніж .
Приклад.
Нехай , . При і - нескінченно малі. Знайдемо
Отже, при є нескінченно малою нижчого
порядку малості, ніж .Означення 4. Якщо границі відношення і не існує (ні скінчена, ні нескінченна), то і називаються не порівнювальними нескінченно малими.
Означення 5. Якщо
,
то і в точці називаються еквівалентними, і записуються : ~ .
Приклади.
1. Нехай , . Тоді і в точці є нескінченно малі. Оскільки (доведення буде дано в наступній темі), то і є еквівалентні величини, тобто ~ .
2. Довести, що в точці :
а)
б)
в)
г)
д)
е)