Зворотний зв'язок

Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості. Формулювання теореми про існування границі монотонної послідовності і функції. Порівняння величин. Еквівалентні нескінченно малі в

1. Нехай . Тоді і в

точці є нескінченно малі функції. Знайдемо

Отже, в цьому випадку є нескінченно мала вищого порядку, ніж .

2. , , і - нескінченно малі при . Знайдемо

Отже, при є нескінченно мала вищого порядку, ніж .

Означення 3. Якщо

,

то називається нескінченно малою більш нижчого порядку малості, ніж .

Приклад.

Нехай , . При і - нескінченно малі. Знайдемо

Отже, при є нескінченно малою нижчого

порядку малості, ніж .Означення 4. Якщо границі відношення і не існує (ні скінчена, ні нескінченна), то і називаються не порівнювальними нескінченно малими.

Означення 5. Якщо

,

то і в точці називаються еквівалентними, і записуються : ~ .

Приклади.

1. Нехай , . Тоді і в точці є нескінченно малі. Оскільки (доведення буде дано в наступній темі), то і є еквівалентні величини, тобто ~ .

2. Довести, що в точці :

а)

б)

в)

г)

д)

е)


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат