Зворотний зв'язок

Алгебра висловлень

Алгебра висловлень

Носієм алгебри висловлень є множина так званих простих висловлень.

Просте (елементарне) висловлення (висловлювання) - це просте твердження, тобто розповідне речення, щодо змісту якого доречно ставити питання про його правильність або неправильність.

Прості висловлення, в яких виражено правильну думку, називатимемо істинними, а ті, що виражають неправильну, - хибними.

Поняття простого (елементарного) висловлення, поняття істинності і хибності належать до первинних невизначальних понять математики, тобто вони не можуть бути означені через інші більш прості терміни та об’єкти, а пояснюються на прикладах, апелюючи до нашої уяви та інтуїції. До таких понять в математиці належать поняття «число», «пряма», «точка», «площина» тощо.

Наведемо декілька прикладів елементарних висловлень:

1) Київ - столиця України.

2) Число 7 є простим.

3) Число 10 більше від числа 3.

4) Усі натуральні числа є простими.

5) Множина всіх простих чисел є скінченною.

Перші три висловлення є істинними, а два останніх - хибними.

У той же час речення «Хай живе математична логіка!» або «Уважно прочитайте весь цей розділ» не є висловленнями.

Розглядаючи висловлення, виходитимо з двох основних припущень:

1) кожне висловлення є або істинним, або хибним (закон виключення третього);

2) жодне висловлення не є одночасно істинним і хибним (закон виключення суперечності).

Приймаючи ці припущення, ми стаємо на точку зору класичної (традиційної) двозначної логіки. У ХХ столітті виникли і продовжують досліджуватись так звані некласичні логіки: багатозначна логіка, інтуїціоністська (конструктивна) логіка, модальна логіка. У подальшому ми додержуватимемося принципів класичної логіки, в рамках якої проводитимуться всі математичні міркування.

Позначатимемо елементарні висловлення малими латинськими літерами: a,b,c,... (можливо, з індексами), а значення висловлень «Iстинно» і «Хибно» - відповідно символами 1 і 0 або I і Х.

Крім того, розглядатимемо так звані змінні висловлення, які позначатимемо латинськими літерами x,y,z,... (можливо, з індексами) і називатимемо також пропозиційними змінними. Після підстановки замість пропозиційної змінної певного елементарного висловлення ця змінна набуде відповідного значення: 0 або 1.

Сигнатура алгебри висловлень традиційно складається з таких операції: заперечення, кон’юнкція, диз’юнкція та імплікація.

У таблиці 1 наведені різні назви та позначення, які використовують для зазначених операцій.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат