ВІДНОШЕННЯ І СХЕМИ ВІДНОШЕНЬ
212960
1,5
1,5
2
2
5
5
3
3
Розрахунок зарплати проходить у залежності від початкової зарплати та кількості відпрацьованих років. Наприклад, продемонструємо процес нарахування зарплати для працівника Прайс. Початковий його оклад становив 16000. отже, за один пропрацьваний рік він отримує надбавку до зарплати у вигляді 10-ти відсотків. Отже, його зарплата становитиме 16000 + 1600 = 17600. за наступний пропрацьований рік він отримує надбавку у розмірі 1760 і його загальна зарплата становитиме 19360. За третій рік роботи він отримав надбавку 1936. Його теперішня зарплата становить 21296.
Пауель і Прайс не мають керівників.
В даному випадку ключем відношення є підмножина атрибутів К{ПРАЦІВНИК, УПРАВЛЯЮЧИЙ}, так як лише ці атрибути однозначно ідентифікують кортежі. Так як даний ключ не є виділений, то для проведення операцій оновлення не можна використовувати найкоротшу форму запису. Для завдання (b) отримуємо наступні операції оновлення:
СН (ПРАЦІВНИКИ; Раскін, Прайс, Агент по продажу квитків, 13200, 1.5; СТАЖ = 2).
СН (ПРАЦІВНИКИ; Рафаель, Прайс, Агент по продажу квитків, 13200, 1.5; СТАЖ = 2).
DEL (ПРАЦІВНИКИ; Райс, Портер, Авіамеханік, 21780, 2).
ADD (ПРАЦІВНИКИ; ПРАЦІВНИК = Рендольф, ПОСАДА = Агент по продажу квитків)
ІІ. Задано схему відношень R = {НОМЕР-РЕЙСУ, АЕРОПОРТ-ПРИЗНАЧЕННЯ, ГАЛЕРЕЯ, ДАТА, ЧАС}. Кортеж {d1d2d3d4d5} відношення r(R) означає, що “посадка на рейс d1, що вилітає у пункт призначення d2, здійсниться через галерею d3; дата відправлення d4; час відправлення d5”. Визначити ключі відношення.
Розв’язок
Ключем даного відношення виступає НОМЕР-РЕЙСУ, так як не може існувати двох рейсів , що здійснюються в одному аеропорті-відпранику і мають однаковий номер. Також унікально ідентифікує кортежі такого відношення підмножинав атрибутів {ГАЛЕРЕЯ, ДАТА, ЧАС}, так як з одного місця не може одночасно відправитись два літаки. Дане відношення має багато суперключів, які можна отримати з визначених ключів шляхом додавання до них імен атрибутів, що не ввійшли у ключ.
ІІІ. Нехай t кортеж відношення r(R). Х, У підмножини R. Коли вираз t(X)(Y) має зміст? Як його можна спростити у тих випадках, коли воно має зміст?