Точкові і просторові групи кристалічних решіток
n є група з інверсійною віссю n-го порядку. Вона містить також групи S4, яка дуже гарно переходить в 4. Однак S6 перетворюється в 3, а S2 - в 1 через різницю між дзеркально- поворотною віссю і інверсійною.
{ },або коротко n/mmm співпадає з класом Dnh, але має таку відмінність : в міжнародній системі переважає думка, що група D3h містить інверсійну вісь 6-го порядку і позначають цю групу як 62m.
n2m співпадає з Dnd, крім того, що в цьому класі під позначенням 62m входить група D3h. Позначення повинно нагадувати про існування інверсійної осі n-го порядку з перпендикулярної їй віссю 2-го порядку і про наявність вертикальної дзеркальної площини.
3. Позначення кубічних кристалографічних точкових груп.
Міжнародні позначення і позначення Шенфліса для 5-ти кубічних груп приведині на мал.1 . Група Оh є повна група симетрії куба, вклбчаючи не власні операції, які допускаються горизонтальною дзеркальною площиною (h). Група О представляє собою групу куба, яка не містить невласних операцій ; Тd є повна група симетрії правильного тетраїда, виключаючи всі невласні операції; Т-група правильного тетраїда без не власних операцій; Тh отримується, якщо до Т добавити операцію інверсії.
Міжнародні позначення для кубічних груп більш зручні, ніж позначення других кристалографічних точкових груп, оскільки в якості другого символа вони містять цифру 3, яка вказує на наявність в всіх кубічних групах осі обертання 3-го порядку.
4. Просторові групи.
Для кожної кристалічної системи можна побудувати кристалічну структуру з іншою просторовою групою, поміщаючи об'єкт з симетрією кожної з точкових груп цієї системи в кожну з решіток Браве системи. Таким чином вдається отримати тільки 61 просторову групу як це видно в таб.3.
Перерахунок просторових груп.
СистемаЧисло точкових групЧисло решіток БравеПроізвєдєніє
Кубічна5315
Тетрагональна7214
Ромбічна3412
Моноклінна326
Триклинна212
Гексагональна717
Тригональна515
всього321461
Інші 7 груп виникають в тих випадках, коли об'єкт з симетрією даної точкової групи може бути орієнтований в решітці Браве кількома способами, через що появляється декілька просторових груп. Всі такі 73 просторові групи називаються симорфними.
Більшість просторових груп не симорфні і містять операції, які не можуть бути побудовані з трансляції, які утворюють решітку Браве і операції точкових груп.