Зворотний зв'язок

Точкові і просторові групи кристалічних решіток

Тоді таку вісь називають інверсійною віссю n-го порядку. Вісь в групі S4(мал.2) є і інверсійною віссю 4-го порядку. Вісь в групі S6 являється тільки інверсійною віссю 3-го порядку.

4.Відбивання. Віддзеркалення переводить кожну точку в її дзеркальне відображення відносно деякої площини, яка називається дзеркальна.

5.Інверсії. При інверсії є тільки одна нерухома точка. Якщо цю точку взяти за початок відліку, то люба інша точка r переходить в- r.

2.Позначення точкових груп.

Широко використовується дві системи позначення - міжнародна і запропонована Шенфлісом.

Позначення Шенфліса для не кубічних кристалографічних груп.

Пояснимо ці позначення:

Сn : групи містять тільки осі n-го порядку;

Сnv : крім осей n-го порядку, групи мають дзеркальну площину, яка має вісь обертання плюс таке число додаткових дзеркальних площин, якого потребує існування осі n-го порядку;

Сnh : крім осей n-го порядку, групи мають дзеркальну площину перпендикулярну цій осі;

Sn : групи містять тільки дзеркально - повертаючу вісь n-го порядку;

Dn : крім осей n-го порядку, групи містять вісь 2-го порядку перпендикулярну осі n-го порядку, плюс стільки дадаткових осей 2-го порядку, скільки потребує існування осі n-го порядку.

Dnh : ці групи містять всі елементи групи Dn, „+” дзеркальну площину, перпендикулярну осі n-го порядку;

Dnd : групи містять всі елементи групи Dn, „+” дзеркальні площини які мають вісь n-го порядку і ділять на половину , кути між осями 2-го порядку.

Міжнародні позначення для не кубічних кристалографічних точкових груп.

Три символи, які використовують в міжнародних позначеннях, співпадають за змістом з позначеннями Шредінгера:

n співпадає з Сn ;

nmm співпадає з Сnv;Два символи m вказує на існування двох різних типів дзеркальних площин, які містять вісь n-го порядку. Щоб їх представити, треба звернутись до зображення об'єктів, які належать групам 6mm, 4mn і 2mn. Вони показують, що вісь 2j-го порядку переводить вертикальну дзеркальну площину в j дзеркальну площину, но тут автоматично виникає ще j других площин, які ділять на половину кути між суміжними площинами в першому наборі.

Вісь (2j+1)- го порядку, переводить дзеркальну площину в 2j+1 еквівалентних площин, в зв'язку з цим група С3v позначають тільки як 3m.

n22 співпадає з Dn. В цьому випадку справедливі ті ж роздуми, що і для класу nmm, но тепер ми маємо перпендикулярні осі 2-го порядку, а не вертикальні площини.

n/m співпадають з групою Cnh, хоча є така різниця : в міжнародній системі віддають перевагу вважати що групаC3h містить інваріантну вісь 6-го порядку тому її позначають 6. Відмітимо, що група C1h позначають просто як m, а не як 1/m.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат