Зворотний зв'язок

Модальні групи структурні властивості

G = В С K, де K – локально циклічна періодична група, причому (B, K) = (C, K) = 1.

Всяка 4-модальна група G задовольняє тотожність [x2, y2] = 1.

Опис 4-модальних неабелевих груп, які задовольняють тотожність [x, y2] = 1, дається наступним твердженням.

Для неабелевої періодичної групи G наступні умови рівносильні:

G – модальна і задовольняє тотожність [x, y2] = 1;

G = Q  C  K, де K – локально циклічнагрупа, (Q, K) = (C, K) = 1 і C або K можуть бути і одиничними групами.

Групу S3(m) виду:

,

будемо називати узагальненою симетричною групою. Маємо наступний опис неабелевих модальних груп, параметру n = 4. Групи із класу (U4) мають наступну будову:

G = Q  C  B, де B – локально циклічна періодична група, (C, B) = (Q, B) = 1 і C або B можуть бути і одиничними групами;

G = A S, де А – абелева періодична модальна група, а S – узагальнена симетрична група, причому (A, S) = 1.

3. Будова деяких груп із класу (U5).

Довільна група G, із вказаного класу, задовольняє тотожність [x6, y6] = 1. Крім того, для довільних елементів x, y G (U5) має місце рівність ху6х –1 = у6l, де число l залежить від елементів х і у. Для абелевих модальних груп справедлива наступна теорема.

Теорема 1. Абелева група G є модальною тоді і тільки тоді, коли

G – локально циклічна група;

G {C, D}, де С – нециклічна група 9-го порядку, D {B2 B2, B4 B2, B8 B2, B4 B4, E(2, 8)} і Bl – циклічна група l-го порядку;

G = C D T, де Т – локально циклічна періодична група, причому (С, Т) = (D, T) = 1.

Якщо в періодичній модальній групі G = елемент c = [a, b] 1 міститься в центрі групи G, то G містить: або групу кватерніонів Q, або групу діедра D8, або групу Т3, де Т3 має вигляд:

.

Опис спеціальних модальних груп дається наступною теоремою.

Теорема 2. Для неабелевої періодичної групи G наступні умови рівносильні:

G – модальна і задовольняє тотожність [x, y2] = 1;

G = A B, де А – абелева, модальна і періодична, а В {Q, Q*, D8, T3}, причому (А, В) = 1.

Тут Q* = Q {1, u}, де u2 = 1; Е(2, 8) – елементарна абелева група 8-го порядку.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат