Точкові і просторові групи кристалічних решіток
Міжнародні позначення і позначення Шенфліса для 5-ти кубічних груп приведині на мал.1 . Група Оh є повна група симетрії куба, вклбчаючи не власні операції, які допускаються горизонтальною дзеркальною площиною (h). Група О представляє собою групу куба, яка не містить невласних операцій ; Тd є повна група симетрії правильного тетраїда, виключаючи всі невласні операції; Т-група правильного тетраїда без не власних операцій; Тh отримується, якщо до Т добавити операцію інверсії.
Міжнародні позначення для кубічних груп більш зручні, ніж позначення других кристалографічних точкових груп, оскільки в якості другого символа вони містять цифру 3, яка вказує на наявність в всіх кубічних групах осі обертання 3-го порядку.
4. Просторові групи.
Для кожної кристалічної системи можна побудувати кристалічну структуру з іншою просторовою групою, поміщаючи об’єкт з симетрією кожної з точкових груп цієї системи в кожну з решіток Браве системи. Таким чином вдається отримати тільки 61 просторову групу як це видно в таб.3.
Перерахунок просторових груп.
СистемаЧисло точкових групЧисло решіток БравеПроізвєдєніє
Кубічна5315
Тетрагональна7214
Ромбічна3412
Моноклінна326
Триклинна212
Гексагональна717
Тригональна515
всього321461
Інші 7 груп виникають в тих випадках, коли об’єкт з симетрією даної точкової групи може бути орієнтований в решітці Браве кількома способами, через що появляється декілька просторових груп. Всі такі 73 просторові групи називаються симорфними.
Більшість просторових груп не симорфні і містять операції, які не можуть бути побудовані з трансляції, які утворюють решітку Браве і операції точкових груп.
Для наявності подібних додаткових операцій необхідно існування будь-яких визначених співвідношень між розмірами базису і періодами решіток Браве. Коли розміри базису знаходяться в певному співвідношенні з довжинами основних векторів решітки, можуть появлятись два нових типа операцій.
1.Винтові осі. Кристалічна структура з гвинтовою віссю переходить в саму себе при трансляції на вектор, який не належить решітці Браве, з наступним поворотом навколо осі , вздовж якої проходить трансляція.
2.Площини ковзання. Кристалічна структура з площиною ковзання переходить в саму себе при трансляції на вектор , який не належить решітці Браве, з наступним відображенням в площині, яка містить цей вектор.