Дослідження ВТНП-плівок
N(t)=t1/2, t<1
(1.2.8)
N(t)=t-1 , t1
Для надпровідникової плівки, товщина якої hL поверхневий імпеданс Z рівний її хвильовому імпедансу Z=W. Використовуючи (1.2.4) для дійсної частини Z отримаємо [ 15 ]:
, L<<N. (1.2.9)
Удосконалення технології росту кристалів і методики вимірювань дозволить отримувати значення R, близькими до теоретичних розрахунків, зроблених на основі [ 14 ]
Вище сказане у п.1.1 вiдносилось до випадку постiйного магнiтного поля та струму. Для даної роботи бiльш актуальним є випадок змiнного НВЧ поля та струму.
Для введення поверхневого iмпедансу розглянемо випадок, коли металева поверхня спiвпадає з площиною XY, а метал займає напiвпростiр в напрямку осi z (Рис.1.3.1.). Метал будемо вважати однорідним , ізотропним і лінійним.
Рiвняння Максвела, нехтуючи струмом зміщення, для комплексних амплiтуд можна записати:
(1.3.1)
Рис.1.3.1. До введення поняття поверхневого імпедансу.
Як було раніше вказано, закон змiни електромагнiтного поля можна взяти у виглядi плоскої хвилі, тобто eіt.
Iз врахуванням того, що значення нормальних похiдних компонент поля в металi значно бiльшi тангенцiйних, з двох останнiх рiвнянь (1.3.1) i рiвняння div j=0 , отримаємо:
,
, (1.3.2.)
,
що стосовно до нормальних компонент змiнних полiв означає, що Еn0, Hn0, jn0. Нехтуючи тангенцiйними похiдними з перших двох рiвнянь (1.3.1) витiкає
, (1.3.3)
,
де - одиничний вектор нормалi до поверхнi, направлений в середину металу.
Iнтегруючи рiвняння (1.3.3) по z вiд 0 до , знаходимо