Дослідження ВТНП-плівок
a,b, нм
, нм
a,b, нм
, нм
La1.85Sr0.15CuO4401804303,70,7
YBa2Cu3O7952271803,10,4
Bi2Sr2CaCu2O8952255003,8-1,80,2
Bi2Sr2Ca2Cu3O101153<25>5003,0<0,2
Таб.1.1.1. Параметри ВТНП-матеріалів
Із-за малої довжини когерентності ( 1-30 ) вихрі слабо закріплені на дефектах зразка і можуть легко переміщатися по ньому як і при пропусканні через зразок струму, так і при наявності градієнта температури. Рис.1.1.2 служить якісною ілюстрацією механізма руху вихрів. Потенціальний рельєф для вихрів у зразку визначає силу пінінга (рис.1.1.2 а).
Рис.1.1.2. Схематичне зображення потенціального рельєфу, який призводить до пінінгу і його зміна при протіканні струму через зразок.
Якщо через зразок пропускати струм, то із-за сили Лоренца [ JB ], яка діє на вихрі потенціальний рельєф зміниться (рис.1.1.2 б і в). При критичному струмові Jc всі вихві починають вільно рухатись по зразку, тобто пінінг в цьому випадку відсутній. Однак при кінечній температурі існує ймовірність руху вихрів і при J< Jc. Дійсно, ймовірність проникнення вихрів через бар’єр висотою U
W = W0 exp ( -U / kT ). (1.1.1)
При наявності струму
U = U0 ( 1 - J / Jc ), (1.1.2)
і тому
(1.1.3)
Вирішуючи цей вираз відносно J, отримуємо
. (1.1.4)
Таким чином, якщо в надпровіднику ІІ роду з пінінгом можливий надпровідний струм, то він буде затухати з часом. В традиційних надпровідниках U0/kT велике, і цей ефект практично відсутній. В ВТНП величина U0/kT0,1, і рух вихрів легко спостерігати.
Перші ВТНП були отримані спіканням відповідних хімічних елементів з послідуючим відпалом в атмосфері кисня. В результаті отримується керамічний сплав, який складається з спечених гранул. Тому такі ВТНП називають керамічними або гранулярними. Характерний розмір складає біля 10 мкм. Перші експеременти проводились саме на таких керамічних зразках, і лише потім навчилися вирощувати монокристалічні зразки, що до цього є досить важкою технологічною задачою. Гранулярні надпровідники представляють собою середовище з слабкими джозефсоновськими зв’язками, які визначають незвичайні його електродинамічні властивості.