Оптика
На основі корпускулярної теорії було важко пояснити, чому світлові пучки, перетинаючись у просторі, ніяк не діють один на одного. Адже світлові частинки повинні стикатися й розсію¬ватися.
Хвильова ж теорія це легко пояснювала. Хвилі, наприклад, на поверхні води вільно проходять одна крізь одну, не впливаючи взаємно.
Проте за хвильовою теорією важко пояснити прямолінійне поширення світла, яке приводить до утворення за предметами різких тіней. За корпускулярною ж теорією прямолінійне поши¬рення світла — це просто наслідок закону інерції.
Таке непевне становище щодо природи світла тривало до початку XIX ст., коли були відкриті явища огинання світлом перешкод (дифракція) та посилення або послаблення світла від накладання світлових пучків (інтерференція). Ці явища властиві тільки хвильовому рухові. Пояснити їх за корпуску¬лярною теорією не можна. Тому здавалося, що хвильова теорія остаточно перемогла.
Така впевненість особливо зросла після того, як Максвелл у другій половині XIX ст. показав, що світло є окремим випадком електромагнітних хвиль. Праці Максвелла заклали основи електромагнітної теорії світла.
Після того, як Герц експериментально виявив електромагнітні хвилі, ніяких сумнівів у тому, що під час поширення світло поводиться як хвиля, не лишилося. Немає їх і тепер.
Але на початку XX ст. уявлення про природу світла почали докорінно змінюватися. Несподівано з'ясувалося, що відкинута корпускулярна теорія все-таки має під собою основу. Виявилося, що під час випромінювання і поглинання світло поводиться подібно до потоку частинок.
Було виявлено переривчасті, або, як кажуть, квантові, властивості світла. Виникла незвичайна ситуація: явища інтерференції і дифракції, як і раніше, можна було пояснити, вважаючи світло хвилею, а явища випромінювання і поглинання — вважаючи світ¬ло потоком частинок.
Спочатку ознайомимося із хвильовими властивостями світла. Про корпускулярно-хвильовий дуалізм (двоїстість) властивостей світла розповідатиметься далі.
4. Геометрична і хвильова оптика
На початку ознайомлення з оптичними явищами було введено поняття світлового променя. Промені показують напрям поширення світла. Щоб визначити цей напрям, виділяють вузькі світлові пучки, діаметр яких значно більший від довжини хвилі. Потім замінюють ці пучки лініями, що є ніби осями світлових пучків. Ці лінії і зображають світлові промені.Зручність від введення цього поняття полягає в тому, що на¬прям світлових променів у просторі визначається простими закона¬ми — законами геометричної оптики.
Геометричною оптикою називається розділ оптики, в якому вивчаються закони поширення світлової енергії в прозорих се¬редовищах на основі уявлень про світловий промінь.
Ці закони було встановлено експериментально, задовго до , з'ясування природи світла. Але вони випливають з хвильової теорії світла як наближення, дійсне, коли довжина хвилі значно менша від розмірів перешкод, розміщених не дуже далеко від місця спостереження.
5. Лінзи – оптичний прилад
Лінза – це оптичний прилад, який дає збільшене зображення предмета. Як правило, лінзи зроблені зі скла і мають опуклу чи увігнуту поверхню. Коли світло проходить крізь скло, воно заломлюється, тобто змінює напрям свого руху. Цей ефект можна спостерігати, якщо опустити соломинку в склянку з водою: здається, що вона зламана. Якщо скло, крізь яке проходить світло, має змінну товщину, то зображення предмета, розміщеного за ним, спотворюватиметься, стаючи більшим чи меншим.
Відхилення світлового променя при переході з повітря в скло використовується в оптичних інструментах, наприклад у лінзах. Лінзи – шматочки скла чи прозорої пластмаси спеціальної форми, які фокусують світло, створюють зображення і збільшують їх, змінюючи напрям променів світла. Лінзи бувають опуклими й увігнутими. Краї опуклої лінзи тонші від центра, а увігнутої – товщі. Від форми лінзи залежить, чи збиратиметься світло в одну точку, чи розсіюватиметься. Таким чином, лінзи діляться на ті, що збирають і розсіюють світло.