Властивості визначеного інтеграла
50. Сталий множник С можна винести за знак визначеного інтеграла
(35)
Дійсно
60. Визначений інтеграл від суми інтегрованих функцій дорівнює сумі визначених інтегралів від цих функцій:
(36)
Для довільного τ - розбиття маємо
Звідси, переходячи до границі при дістанемо формулу (36). Ця властивість має місце для довільного скінченого числа доданків.
Властивості 50 і 60 називають лінійністю визначеного інтервала.
70. Якщо всюди на відрізку [a;b] маємо , то
(37)
(збереження знака підінтегральної функції визначеним інтегралом).
Оскільки
то будь-яка інтегральна сума і її границя при , теж невід'ємна.
80. Якщо всюди на відрізку [a;b] маємо , то
(38)
(монотонність визначеного інтеграла).
Оскільки то з нерівності (37) маємо
Використовуючи властивість 40 , дістанемо нерівність (38).
Якщо то властивість 80 можна зобразити геометрично (7.7): площа криволінійної трапеції aA1B1b не менша площі криволінійної трапеції aA2B2b.
90. Якщо функція f(x) інтегрована на відрізку [a;b] (a
(39)
Застосовуючи формулу (38) до нерівності
дістаємо
Звідки й випливає нерівність (39).
100. Якщо то