Зворотний зв'язок

Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку

Оскілки , то існує S-1. Перепишемо рівняння та у матричній формі

або .

Відкіля і взагалі

Знайдемо границю Pn:

Твердження 1 теореми доведено.

Доведемо тепер, що рядки матриці однакові. Для цього обчиcлимо .

Оскільки , то Ми бачимо, що рядки матриці - однакові. Доведемо тепер, що їх елементи додатні. Для цього врахуємо отриману раніше залежність

Для того, щоб довести треба довести, що , треба довести, що та .

Маємо

,

, тому що p>0 і q >0

Теорема доказана.

Зауваження1 В процесі доведення ми вивели, що для 2х2 матриць

Зауваження2 Позначимо рядки граничної матриці . Тоді можна знайти з умови:

Доведення.

Оскільки

Зівдки

Або

Звідки

Зокрема, для 2х2 матриці

Умовою рядок визначається однозначно, що для 2х2 матриці можна перевірити.

В роботі дані для матриць другого порядку елементарні доведення таких фундаментальних теорем теорії невід'ємних матриць. як теореми Перрона, Перрона-Фробеніуса, Маркова.

У відомій нам літературі повне доведення цих теорем дається для загального випадку матриць n-го порядку з використанням неелемнтарних теорем і методів. А математичний апарат, який використовується в даній роботі, це: аналіз поведінки розв'язків квадратного рівняння та розв'язків системи двох лінійних рівнянь в залежності від коефіцієнтів.


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат