Доведення теорем Перрона-Фробеніуса та Маркова для матриць другого порядку
Якщо власний вектор Х відповідає власному значенню l, то сХ, де с - const, також власний вектор, що відповідає l. Власне значення є коренем характеристичного рівняння . Звідки видно, що не у кожної матриці є власні значення.
Визначення: Матриця А зветься додатною, якщо всі її елементи додатні, це позначається А>0.
Теорема Перрона: Нехай А - додатна матриця, тоді А має додатне власне значення r>0 таке, що:
1. r- відповідає єдиний (з точністю до множення на число) власний вектор.
2. інші власні значення по модулю < r.
3. власний вектор, що відповідає r, можна вибрати додатним (тобто з додатними елементами).
Доведення теореми для 2х2 матриць.
Нехай .
Тоді .
Напишемо характеристичне рівняння для матриці А:
.
Це квадратне рівніння з дискримінантом:
І тому
Тобто твердження теореми 1 і 2 доведені, якщо r=l1.
Знайдемо власний вектор , що відповідає власному значенню l1 з рівності
Тоді
, або
Враховуючи, що
перепишемо систему у вигляді:
Але і тому рівняння системи пропорціональні, а це означає, що одне з них можна відкинути.
Знайдемо x1 з першого рівняння системи
Щоб довести, що власний вектор можна вибрати додатним, достатньо перевірити, що ,тому що поклавши отримаємо x1>0.
Враховуючи, що b>0 треба довести, що ,
але це випливає з того, що , бо cb>0.
Таким чином третє твердження доведено, а з ним доведена теорема.