Інтегрування з допомогою заміни змінної. Інтегрування частинами
Інтегрування з допомогою заміни змінної. Інтегрування частинами
План
Інтегрування частинами
Інтегрування часток
Заміна змінної
1. Інтегрування частинами
Нехай і - диференційовані функції на
Тоді або
Звідси
(8.16)
Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі.
Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій :
де -поліном , - раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що - за . Інтегруючи вирази вигляду , , після того як підінтегральна функція буде розписана за властивостями 40 і 50 , одержимо інтеграли вигляду , де - одна з функцій в яких слід за брати , бо, в протилежному випадку, інтеграл ускладнюватиметься за рахунок зростання степенів . В інтегралах , де - одна з функцій вигідно за брати . В інших випадках вибір здійснюється залежно від того, при якому з виборів легше знайти за , хоч це теж не є абсолютною істиною . Іноді доводиться експериментувати .
Інтегруючи вирази , доцільно за взяти . Знаходження із співвідношень теж здійснюється інтегрування частинами .
Для прикладу знайдемо
Приймаючи, а , знайдемо
Далі матимемо , тобто дістанемо інтеграл .
Знову, взявши , знайдемо . Отже , одержимо таку систему рівнянь відносно та :
Звідси
Приклад 1 .
Позначивши ,
одержимо . Звідси
. (8.17)