Зворотний зв'язок

Інтегрування і пониження порядку деяких диференціальних рівнянь з вищими похідними

Інтегрування і пониження порядку деяких диференціальних рівнянь з вищими похідними

ДР що містять n-ту похідну від шуканої функції і незалежну змінну.

а) Розглянемо ДР (4.38)

Так як , то

Аналогічно , …..,

(4.39)

Остання формула дає розвязок загальний в області

Формулу (4.39) легко використати для знаходження розвязків задачі Коші з начальними умовами

(4.40)

Цей розвязок представляється в вігляді (4.41)

Ф-я

являється частиним розвязком ДР (4.38) з початковими умовами

яким відповідають константи

Для обчислення використовують ф-лу Коші

(4.42)

Дійсно інтеграл

можна розглядати як повторний інтеграл в заштрихованій області (мал. 1).

Міняючи порядок інтегрування, отримаємо

Аналогічно обчислюємо

.. і. т. д.

Приходимо до ф-ли (4.42)

Таким чином розвязок (4.41) записується у вигляді

Загальний розвязок ДР (4.38) можна також записати через невизначений інтеграл

Пр. 4.4 Розвязати рівняння

Послідовно знаходимо ,


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат