Інтегрування раціональних функцій
Розглянемо правильний раціональний дріб . При розкладі його на прості дроби одержимо таку суму простих дробів:
(8.22)
Перша група доданків у цій сумі в результаті інтегрування дає
,
тобто ірраціональний вираз. Друга група доданків, якщо її проінтегрувати, буде такою:
.
Третя група доданків після інтегрування:
.
Використовуючи рекурентну формулу, зведеться до суми правильного раціонального дробу і з деяким числовим множником . Якщо (8.22) проінтегрувати і додати всі дроби раціональної частини інтеграла, одержимо правильний дріб вигляду , де
, а - поліном, степінь якого буде меншим, ніж степінь полінома в знаменнику. Тому
, (8.23)
де - теж раціональний дріб, усі множники знаменника якого
або лінійні, або квадратні в першому степені, або їх комбінації, причому .
Із (8.23) знаходимо
(8.24)
Тут поліноми і - невідомі, степені їх треба брати на одиницю меншими, ніж степені в знаменнику, при цьому їх треба записувати з невизначеними коефіцієнтами, які знаходять так само, як і в разі розкладу раціонального дробу на прості дроби. Але перш, ніж звільнитися від дробів у (8.24), треба скоротити дріб, одержаний від диференціювання, на спільні множники чисельника і знаменника, якщо у знаменнику були степені множників більші за одиницю. У всіх випадках після диференціювання знаменник дробу повинен дорівнювати .
Приклад.
.
Р о з в ' я з о к. Підінтегральну функцію, користуючись формулою (8.24), подамо у вигляді
де - невідомі числа.
Розглянемо дріб ,
де .
Тоді