Критерій інтегрованості функцій
Критерій інтегрованості функцій
Комбінацією, що інтегрується, називається диференціальне рівняння, отримане шляхом перетворень із системи, диференціальних рівнянь, але яке вже можна легко інтегрувати.
.
Одна комбінація, що інтегрується, дає можливість одержати одне кінцеве рівняння
,
яке є першим інтегралом системи.
Геометрично перший інтеграл являє собою -вимірну поверхню в -вимірному просторі, що цілком складається з інтегральних кривих
Якщо знайдено -комбінацій, що інтегруються, то одержуємо перших інтегралів
І, якщо інтеграли незалежні, то хоча б один з визначників . Звідси з системи можна виразити - невідомих функцій через інші і підставивши їх у вихідну систему, понизити порядок до - рівнянь. Якщо і всі інтеграли незалежні, то одержимо загальний інтеграл системи.
Особливо поширеним засобом знаходження комбінацій, що інтегруються, є використання систем у симетричному вигляді.
Систему диференціальних рівнянь, що записана в нормальній формі
можна переписати у вигляді
..
При такій формі запису всі змінні рівнозначні.
Система диференціальних рівнянь, що записана у вигляді
,
називається системою у симетричному вигляді.
При знаходженні комбінацій, що інтегруються, найбільш часто використовується властивість “пропорційності”. А саме, для систем в симетричному вигляді справедлива рівність
.
Розглянемо деякі типи диференціальних рівнянь, що інтегруються в квадратурах.
1) Рівняння вигляду
.
Проінтегрувавши його -раз одержимо загальний розв'язок у вигляді
.