Зворотний зв'язок

Методи інтегрування

Приклад. Знайти інтеграл

Розв'язування. Зробимо підстановку х = 5sint, тоді

Отже, одержимо

Із рівності х = 5sin t одержимо t = arcsin (х/5);

Отже,

b) Якщо зробити заміну змінної, тобто t = φ (х) тоді має місце

рівність

Після знаходження останнього інтеграли треба повернутись до змінної х, використовуючи рівність t = φ (х).

Приклад. Знайти

Розв'язування. Нехай тоді

Тому

Метод інтегрування частинами

Цей метод застосовується тоді, коли під інтегралом є добуток функцій, причому хоча би одна з них є трансцендентною (не степеневою).

Нехай u та v деякі функції х, тобто u = u(x), v = v(x).

Розглянемо диференціал добутку цих функцій.

d(uv) = udv + vdu

Інтегруючи обидві частини рівності, одержимо

Звідси, враховуючи властивість невизначеного інтеграла, маємо

Отже, одержали формулу

яку називають формулою інтегрування частинами.

Ця формула дозволяє знаходження інтеграла звести до зна¬ходження інтеграла . При вдалому обранні u то dv інтеграл може бути табличним або простішим ніж заданий інтеграл

Приклад. Знайти

Розв'язування. Нехай u = Inx, dv = dx. Тоді v = x

За формулою інтегрування частинами (4) одержимо

Література:


Реферати!

У нас ви зможете знайти і ознайомитися з рефератами на будь-яку тему.







Не знайшли потрібний реферат ?

Замовте написання реферату на потрібну Вам тему

Замовити реферат