Початки комбінаторики
1. База індукції. При n=2 будь-якій перестановці складу (k1, k2) взаємно однозначно відповідає підмножина тих номерів місць із {1, 2, …, k1+k2}, на яких розташовано елементи a1. Але ці підмножини є комбінаціями з k1+k2 по k1, і їх . Отже, P(k1, k2)=, і базу доведено.
2. Індукційний перехід. За припущенням індукції,
P(k1, k2, …, kn)=.
Поставимо довільній перестановці складу (k1, k2, …, kn, kn+1) у відповідність пару вигляду
(підмножина номерів місць, де розташовано елементи an+1,
перестановка з повтореннями решти елементів по інших місцях).
За принципом добутку та за припущенням індукції, кількість таких пар є
Оскільки очевидно, що відповідність між перестановками складу (k1, k2, …, kn, kn+1) та наведеними парами є взаємно однозначною, то правильність формули для P(k1, k2, …, kn) доведено.
За означенням, перестановки складу (k1, k2, …, kn) є послідовностями довжини m=k1+k2+…+kn, тобто розміщеннями з повтореннями окремого вигляду, а саме, з фіксованими кількостями елементів a1, a2, …, an. Таким чином, послідовності чисел (k1, k2, …, kn), таких, що k1+k2+…+kn=m, взаємно однозначно відповідає підмножина множини розміщень. Перебираючи всі можливі послідовності чисел (k1, k2, …, kn), ми перебираємо всі можливі розміщення.
Наведені неформальні міркування демонструють зв'язок між перестановками й розміщеннями з повтореннями та обгрунтовують формулу:
nm=.
5. Комбінації з повтореннями
Комбінації елементів якоїсь множини - це її підмножини. Але у множинах елементи не повторюються, тому термін "комбінації з повтореннями", що склався в математиці, не можна вважати вдалим.
Розглянемо це поняття за допомогою перестановок із повтореннями. Усі перестановки з повтореннями з елементів множини A={a1, a2, …, an} з тим самим складом (k1, k2, …, kn), де k1+k2+…+kn=m, будемо вважати еквівалентними між собою. Таким чином, множина перестановок розбивається на класи еквівалентності, які взаємно однозначно відповідають усім можливим складам (k1, k2, …, kn). Кожний такий клас еквівалентності й називається комбінацією по m елементів з повтореннями складу (k1, k2, …, kn) [1].
Можна означити комбінації з повтореннями дещо інакше. Серед усіх еквівалентних перестановок складу (k1, k2, …, kn) є перестановка вигляду
(a1, a1, …, a1, a2, a2, …, a2, …, an, an, …, an).
14243 14243 14243
k1 k2 … kn
Цю перестановку також будемо називати комбінацією по m елементів множини {a1, a2, …, an} з повтореннями складу (k1, k2, …, kn).
Приклади.
1. При A={a, b, c} усіма комбінаціями по 2 з повтореннями є послідовності (a,a), (a,b), (a,c), (b,b), (b,c), (c,c). Їм відповідають усі можливі склади (2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2).