Обернені тригонометричні функції.Тригонометричні рівняння і нерівності
sin (-arcsin х) =-sin (arcsin x) = -x.
Але якщо два числа належать одному проміжку і синуси їх рівні, то й числа рівні, оскільки синус монотонний на вказаному проміжку. Отже,
arcsin (-х) = -arcsin x.
Властивість непарності підтверджується симетрією графіка функції у=arcsin x відносно початку координат.
Обчислюючи значення функції arcsin за таблицями синусів кутів, виражених у градусах, слід додержуватися правил наближе¬них обчислень. Ця вимога не завжди виконується в навчальному посібнику [2]. Так, в прикладі 1 з пояснювального тексту п. 85 записи слід було б виконати так:
0,9063 sin 65°00';
65° 00' 1,1345 рад;
arcsin 0,9063 1,1345,
оскільки даному наближеному значенню синуса 0,9063 за табли¬цями відповідає наближене значення кута з точністю до 1.
Якщо треба знайти arcsin 0,68, то відповідні записи повинні мати такий вигляд:
0,68 sin 420
420 0,73;
arcsin 0,683 0,73
Вивчення інших обернених тригонометричних функцій можна проводити за таким самим планом, максимально стимулюючи самостійну роботу учнів під час знаходження відповідної оберне¬ної функції і з'ясування h властивостей. Щодо арккосинуса вчитель має звернути увагу учнів на те, що ця функція не належить ні до парних, ні до непарних функцій. Вона задовольняє умову
arccos (-х) = - arccos х.
Можна запропонувати допитливим учням самостійно довести що тотожність.Учні краще засвоять обернені тригонометричні функції та їх властивості, виконавши такі вправи.
1) Чи існує arccos 1,5?
2 ) Чи правильні рівності: arcsin х = , arccos х = - ; arccos х = ?
3) Знайдіть область визначення функції у = arcsin (2х- 3).
4) В якій чверті знаходиться дуга у = 3arctg 1,7?
5) Обчисліть sin ; .
Детальніше розглянути властивості обернених тригонометрич¬них функцій можна на заняттях математичного гуртка, зокрема на таких заняттях доцільно довести тотожності:
arccos (-х) = - arccos x,